Phone (269) 934-7707

Wightman Environmental, Inc.

Fax # (269) 934-7414

ENVIRONMENTAL AND TESTING SERVICES
4050 KING DRIVE
P.O. BOX 95
SODUS, MICHIGAN 49126-0095

March 25, 2010

Justice Drive, LLC. 58155 M-51 South Dowagiac, MI 49047

Attn: Mr. Ed Williams

RE: PHASE II ENVIRONMENTAL SITE ASSESSMENT 58634 M-51 SOUTH IN DOWAGIAC, MICHIGAN

Dear Mr. Williams:

Pursuant to the Phase I Environmental Site Assessment (ESA) conducted for the referenced property additional investigation was recommended at the site. The Phase I ESA identified the following recognized environmental conditions (RECs):

- 1. Five unknown pipes were identified exiting the concrete floor inside the barn structure on the subject property. The pipes appear to be, or have been, connected to some sort of underground device.
- 2. Contaminated soil and/or groundwater has been identified on the adjoining property to the north of the subject property. Contamination may have migrated south to the subject property impacting soil and/or groundwater.

Following is a discussion of the Phase II ESA field work performed, analytical results and our findings and comments regarding the work.

WORK PERFORMED

On March 10, 2010 two Wightman Environmental, Inc. (WEI) field technicians visited the site to inspect the unknown pipes exiting the concrete floor inside the barn structure (REC #1). WEI field technicians installed a series of five soil probes in the area of the pipes exiting the barn floor. The soil probes extended into cored holes in the concrete floor approximately 6-feet below

Mr. Ed Williams March 25, 2010 Page 2 of 5

ground surface (bgs). No subsurface structures were encountered in the soil probes with the exception of a drainage pipe. The drainage pipe was traced from the cylindrical depression below floor grade to its outfall on the south side of the barn. The pipe appeared to be an overflow drainage pipe for the cylinder. A measuring tape was also inserted into the pipe exiting the below grade cylinder to a depth of approximately 25-feet. Groundwater was encountered in the pipe at approximately 21-feet bgs. The pipes appear to be the remnants of a former hand-pump water supply well system.

WEI returned to the site on March 15, 2010 for the installation of soil borings and temporary monitoring wells along the subject property's north property line to identify if the adjacent metal recycling facility has impacted the subject property's soil and/or groundwater (REC #2). A total of three soil borings were installed utilizing a truck mounted push-probe drill rig. A soil boring location map is attached to this report which shows the locations of the soil borings/temporary monitoring wells. Soil boring SB-1 was advanced to 13.5-feet bgs, soil boring SB-2 was advanced to 25-feet bgs, and soil boring SB-3 was advanced to 10-feet bgs. A temporary monitoring well was installed in each boring with the screen set to bisect the observed groundwater elevation where a groundwater sample was collected. A deeper groundwater sample was also collected from soil boring SB-2 at approximately 25-feet bgs. There were no visual or olfactory signs of contamination observed in the soils or groundwater during the investigation. Temporary monitoring wells were allowed to purge for a field determined time to limit the amount of sediment contained in the collected groundwater sample. A total of four groundwater samples were collected in dedicated laboratory containers preserved with nitric acid, and sent to an independent analytical laboratory for the analysis of Michigan 10 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, copper, zinc) and volatile organic compounds (VOCs). Groundwater samples were not field filtered but shipped to the analytical laboratory within 24-hours for filtration and analysis.

Soils encountered during the investigation generally consisted of topsoil overlying tan medium sand. Boring logs generated for the soil borings installed at the site are included in Appendix C of this Phase II ESA.

FINDINGS

The pipes protruding from the concrete floor within the barn appear to be the remnants of a former water supply well. The former well system contains an overflow discharge pipe which discharges to the south of the barn. No RECs were identified with the former water supply well system. It is the opinion of WEI that any well or septic system not in use at the property be properly closed per State & County regulations.

During the soil boring/temporary monitoring well installations there were no visual or olfactory signs of contamination noted in soil or groundwater samples. Following is a brief discussion of the analytical results from the groundwater samples collected at the property.

- Concentrations of dissolved lead were detected in groundwater samples SB-1-GW (5.2) ppb), SB-2-GW (4.8 ppb), SB-2D-GW (5.0 ppb), and SB-3-GW (5.6 ppb) above current MDNRE Part 201 Generic Residential & Commercial I Drinking Water Criteria.
- Concentrations of chromium were detected in groundwater sample SB-2-GW (39 ppb) above current MDNRE Part 201 Generic Groundwater Surface Water Interface Criteria.
- Concentrations of chromium were detected in groundwater sample SB-2D-GW (120 ppb) above current MDNRE Part 201 Generic Residential & Commercial I Drinking Water Criteria and Groundwater Surface Water Interface Criteria.

Due to the impacted groundwater samples WEI performed a file review of the metal recycling facility at the MDNRE Kalamazoo District Office. Following is a brief overview of the file review findings:

- A Baseline Environmental Site Assessment (BEA) was conducted for the metal recycling facility due to exceedances of MDNRE Part 201 Generic Cleanup Criteria in soil and groundwater samples collected from the site.
- Dissolved lead concentrations were found to exceed MDNRE Part 201 Generic Drinking Water Cleanup Criteria in four groundwater samples collected from temporary monitoring wells located at the metal recycling facility in 2008.
- Concentrations of barium, cadmium, chromium, cooper, and zinc were also detected in groundwater samples but below MDNRE Part 201 Generic Cleanup Criteria.
- According to the file review, groundwater appears to be flowing in a west-southwest direction beneath the metal recycling facility.

COMMENTS

Groundwater samples were found to contain concentrations of lead and chromium in exceedance of MDNRE Part 201 Generic Cleanup Criteria. The source for the impacted groundwater could be from a variety of sources or circumstances; most notably the adjacent metal recycling facility. Elevated concentrations of lead and chromium could also be from repeated applications of pesticides and fertilizers on the agricultural field or that particular area may contain naturally elevated concentrations of lead and chromium.

The concentrations of lead and chromium identified in the groundwater samples collected from the subject property and the concentrations of various metals concentrations in soil and groundwater at the adjacent metal recycling facility suggest that the impacted groundwater observed on the subject property is a result of the adjacent metal facility's operations.

Property transactions can certainly proceed as long as all parties are aware of the environmental conditions present at the site. Certain reports and documents may need to be filed with the State to alleviate liability concerns to the owner, operators, and/or prospective buyer(s). A BEA can be performed on the subject property to address the environmental liability concerns for new

Mr. Ed Williams March 25, 2010

Page 5 of 5

owners, operators, or lessees. Additional options at the site include re-sampling the groundwater

to verify the concentrations observed in the initial sampling.

The following items have been attached to this report for your use:

• Appendix A contains a Soil Boring/Temporary Monitoring Well Location Map.

• Appendix B contains a table comparing groundwater sample results to MDNRE Part 201

Generic Cleanup Criteria.

• Appendix C contains soil boring logs.

• Appendix D contains pictures taken during the Phase II ESA field work.

• Appendix E contains selected pages from the MDNRE file review for the adjacent metal

recycling facility.

• Appendix F contains the analytical laboratory report.

We hope this report meets with your present needs. Please contact us regarding your options at

the site or if you have any questions or comments.

Sincerely,

Wightman Environmental, Inc.

Simpur S. Walhur

Alexander S. Wallace

Project Manager

Table 1

Analytical Soil Sample Results March 15, 2010 Phase II ESA 58634 M-51 South Dowagiac, Michigan

SAMPLE ID:	SB-1	-GW	SB-2	2-GW	SB-2l	D-GW	SB-3	-GW	l			Residential &	
SAMPLE DATE:	3/15/	2010	3/15/	2010	3/15/	2010	3/15/	2010	1	Residential	Groundwater	Commercial I	
DATE ANALYZED:	3/22/	2010	3/22/	2010	3/22/	2010	3/22/	2010		& Commercial			
SAMPLE TYPE:	WA	ΓER	WA	TER	WA	TER	WA	ΓER		I Drinking	Interface	Volatilization to Indoor	Groundwater
ANALYTICAL METHOD:	SW6	010B	SW6	010B	SW6	010B	SW6	010B		Water Criteria	Criteria	Air Inhalation Criteria	Contact Criteria
	Result	PQL	Result	PQL	Result	PQL	Result	PQL					
DISSOLVED METALS													
Mercury	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20		2.0 (A)	0.0013	56 (S)	56 (S)
Arsenic	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0		10 (A)	150 (X)	NLV	4,300
Barium	<100	100	120	100	<100	100	110	100		2,000 (A)	(G,X)	NLV	14,000,000
Cadmium	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0		5.0 (A)	(G,X)	NLV	190,000
Chromium	<10	10	39	10	120	10	<10	10		100 (A)	11	NLV	460,000
Copper	11	4.0	25	4.0	58	4.0	8.0	4.0		1,000 (E)	(G)	NLV	7,400,000
Lead	5.2	3.0	4.8	3.0	5.0	3.0	5.6	3.0		4.0 (L)	(G,X)	NLV	ID
Silver	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50		34	0.2 (M); 0.06	NLV	1,500,000
Zinc	<20	20	<20	20	28	20	28	20		2,400	(G)	NLV	110,000,000
Selenium	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0		50 (A)	5.0	NLV	970,000

NOTES:

*Only dissolved metals concentrations are shown. All VOC concentrations were non-detect. See analytical laboratory report for complete listing of analytical parameters.

- (A)=Criterion is the state of Michigan drinking water standard established pursuant to Section 5 of 1976 PA 399, MCL 325.1005.
- (E)=Criterion is the aesthetic drinking water value, as required by Section 20120a(5) of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (NREPA).
- (G)=Groundwater surface water interface (GSI) criterion depends on the pH or water hardness, or both, of the receiving surface water.
- (L)=Criteria for lead are derived using a biologically based model, as allowed for under Section 20120a(10) of the NREPA, and are not calculated using the algorithms and assumptions specified in pathway-specific rules.
- (M)=Calculated criterion is below the analytical target detection limit, therefore, the criterion defaults to the target detection limit.
- (S)=Criterion defaults to the hazardous substance-specific water solubility limit.
- (X)=The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source.
- ID=Means insufficient data to develop criterion.
- NLV=No Listed Value for parameter.

^{**}All parts shown in parts per billion (ppb).

^{***}Bolded cells indicate exceedance of MDEQ Part 201 Residential Generic Cleanup Criteria.

	_		_
Justice	Drivo	11	\sim
JUSTICE	I JI IVE		٠,

Dowagiac, Michigan

Project #100011

Date Started : 3-15-10 Date Completed : 3-15-10

Northing Coord.

Company Rep.

: see map

Wallace

50	OIL B	OR	(Page 1 of 1)	Hole Diameter Drilling Method Sampling Method	: 2" : Push-Probe : 5' Sleeves		Surv	ting Coord vey By ged By	: see ma : : Alex W
Depth in Feet	Surf. Elev.	GRAPHIC	Water Levels ▼ During Drilling ∇ After Completion ◆ After 24 Hours			Blow Count		Blow Cou	
	LIOV.	GRA	С	DESCRIPTION		Blow	0	Graph 20 40	
0- - - 1- - -			Brown medium silty sandy	TOPSOIL			•		
2-		ALALA ROPORO ROPORO ROPORO ROPORO	Tan clean medium SAND						
3-		148148148 148148148 148148148 148148148							
4-									
5-									
6-		1407070 1407070 1407070 1407070 1407070							
7-		Patratra Patratra Patratra Patratra Patratra							
8-		14 (14 (14 (14 (14 (14 (14 (14 (14 (14 (
9-		140140140 140140140 140140140 140140140 140140140							
10-		140140140 140140140 140140140 140140140 140140140	Wet tan medium-coarse S	AND					
11-		404040 404040 404040 404040 404040							
12-		yayaya yayaya yayaya yayaya							

14

13

03-26-2010 C:\text{Locuments and Settings\Alex Wallace\text{My Documents\100011 Pokagon Band of Potawatomi Indians\Phase II ESA\Boring Logs\SB-1.bor

Temporary Monitoring Well screened @ 9-12.5' bgs.

End of Boring

Justice Drive, LLC

Dowagiac, Michigan

Project #100011

SOIL BORING LOG SB-2

Date Started : 3-15-10
Date Completed : 3-15-10

Company Rep.

Northing Coord. : see map
Easting Coord. : see map

30	JIL D	OK	(Page 1 of 1)	Hole Diameter Drilling Method Sampling Method	: 2" : Push-Probe : 5' Sleeves		Easting Coord. Survey By Logged By	: see map : : Alex Wallace
Depth in Feet	Surf. Elev.	GRAPHIC	Water Levels ▼ During Drilling ∇ After Completion ◆ After 24 Hours	DESCRIPTION		Blow Count	Blow Count Graph 0 20 40 60 8	0
0 1			Brown medium silty sandy	TOPSOIL				
2			Brown fine-medium SAND	with a trace of clay				
3 - 4			Tan medium clean SAND					
10 - 11 -		the complete	Wet tan medium SAND wit	th a trace of silt				
12			Wet tan medium-coarse S	AND				
13 – 14 –		vitvivi vitvivi vitvivi vitvivi						
15		140140140 140140140 140140140 140140140						
16		140140140 140140140 140140140 140140140						
17 - 18 -		140140140 140140140 140140140 140140140						
19		#3743743 #3743743 #3743743 #3743743						
20-		909090 909090 909090 909090						
21 -		909090 909090 909090 909090						
23		909090 909090 909090 909090						
24		140140140 140140140 140140140 140140140						
25-						I	1: : : :	<u> </u>

NOTES

03-26-2010 C:\text{Locuments and Settings\/Alex Wallace\/My Documents\/100011 Pokagon Band of Potawatomi Indians\/Phase II ESA\\Roring Logs\\\SB-2.bor

Temporary Monitoring Well screened @ 9-12.5' bgs and 21.5-25.0' bgs.

Justice Drive, LLC

Dowagiac, Michigan

Project #100011

SOIL BORING LOG SB-3

Date Started : 3-15-10
Date Completed : 3-15-10
Hole Diameter : 2"

Company Rep.

Northing Coord. : see map
Easting Coord. : see map

			(Page 1 of 1)	Hole Diameter Drilling Method Sampling Method	: 2" : Push-Probe : 5' Sleeves		Easting Coord. Survey By Logged By	: see map : : Alex Wallace
	Surf. Elev.	GRAPHIC	Water Levels ▼ During Drilling ▽ After Completion ◆ After 24 Hours	DESCRIPTION		Blow Count	Blow Count Graph	
0-		O				<u> </u>	0 20 40 60 80	_
1-		in the state of th	Brown medium silty sandy					
2— 3— 4—		the plantage of a plantage of the plantage of	Brown medium silty SAND					
5			Tan medium clean SAND					
7-			Tan medium silty SAND					
8-		the count for each for any first representation of the county of the cou	Wet tan medium silty SANI)				
9			Wet medium-coarse SAND					

03-26-2010 C:Documents and Settings\Alex Wallace\My Documents\100011 Pokagon Band of Potawatomi Indians\Phase II ESA\Boring Logs\SB-3.bor

Temporary Monitoring Well screened @ 7-10.5' bgs.

View of former water supply well system located in barn on subject property

View of water supply well overflow pipe exiting beneath the barn floor on the south side of the structure

View of water supply well overflow pipe exiting beneath the barn floor

View of water supply well system inside barn and boring locations

Wightman Environmental, Inc

FACSIMILE COVER SHEET

DATE:	3-23-10	TIME:	10:10 a.m.	FAX #:	269-567-9440
COMPA	NY: MDE	Q – RRD/V	VHMD		
TO: N	/ls. CJ Matt	son, Mrs. M	larcia Reidmille	er, and Ms. C	olleen Frens
FROM:	Alex Wall	ace			
ORIGINA	AL WILL B	E MAILED:	NO		
TOTAL I	NUMBER (OF PAGES	WITH COVER	SHEET: 1	
MESSA	GE:				
I am see	king any in	formation y	ou may have o	n a parcel of	property located at:
			30750 Edward	ds Street	
			Dowagiac, M	11 49047	
The prop	erty is curr	ently occup	ied by Sustair	able Recycli	ing, Inc. and is contained
on the S	tate BEA lis	st and the R	CRA-NonGen	list. The liste	d owner/operator name for
the facilit	ty is Louis	Padnos Iro	n & Metal Co	mpany.	
If any inf	ormation ex	xists please	contact me so	that I may se	et up a time to review the
appropri	ate files.				
Thank yo	ou in advan	ce for your	time with this r	equest.	
Sincerely	y,				
Alex Wa	llace				

IF TRANSMISSION IS NOT COMPLETE PLEASE CALL AS SOON AS POSSIBLE

DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENT

JENNIFER M. GRANHOLM

Kalamazoo District Office

REBECCA A. HUMPHRIES

March 24, 2010

Mr. Alex Wallace Wightman Environmental P.O. Box 95 Sodus, Michigan 49126-0095

Dear Mr. Wallace:

SUBJECT: Request for Disclosure of Official Files From Waste and Hazardous Materials

Division

This written notice is issued in response to your March 23, 2010, request for information under the Freedom of Information Act (FOIA), MCL 15.231 *et seq.*, which was received by this office on March 23, 2010.

The purpose of the FOIA is to provide the public with access to existing, nonexempt public records of public bodies. Your request dated March 23, 2010, to examine or receive a copy of the following documents is denied.

Description of documents being denied: See enclosure.

Reason for denial: To the best of this public body's knowledge, information, and belief, the public record does not exist under the name given by the requester, or by another name reasonably known to the public body.

Authority for denial: Public Act No. 442 of 1976, as amended, Section 3(1). Under section 10 of the FOIA, you may do either of the following:

- 1. Appeal this decision in writing to the Director of the Michigan Department of Environmental Quality at P.O. Box 30473, Lansing, Michigan 48909-7917. The writing must specifically state the word "appeal," and must identify the reason or reasons you believe the denial should be reversed. The head of the department, or his designee, must respond to your appeal within 10 business days after its receipt. Under unusual circumstances, the time for response to your appeal may be extended by 10 business days.
- 2. File an action in circuit court within 180 days after the date of the final determination to deny the request. If you prevail in such an action, the court is to award reasonable attorney fees, costs, and disbursements. Further, if the court finds the denial to be arbitrary and capricious, you may receive punitive damages in the amount of \$500.00.

Sincerely,
Collian Flans

Colleen Frens, FOIA Liaison

Air Quality Division

Kalamazoo District Office

269-567-3540

Enclosure

Wightman Environmental, Inc. APP+124/10

FACSIMILE COVER SHEET

DATE: 3-23-10	TIME:	10:10 a.m.	FAX #:	269-567-9440
	 DEQ – RRDΛ	NHMD		
		//arcia Reidmille	r, and Ms. C	olleen Frens
FROM: Alex W				
ORIGINAL WILL	BE MAILED	: NO		
TOTAL NUMBE	R OF PAGES	WITH COVER	SHEET:	
u				
MESSAGE:				
I am seeking any	information y			property located at:
		30750 Edward	ls Street	
		Dowagiac, M	49047	
The property is o	currently occu	pied by Sustain	able Recyc	ling, Inc. and is contained
on the State BEA	A list and the l	RCRA-NonGen	list. The list	ed owner/operator name for
the facility is Lou	is Padnos Ir	on & Metal Cor	mpany.	
If any informatio	n exists pleas	e contact me so	that I may s	et up a time to review the
appropriate files				
				- ecaived
Thank you in ad	vance for you	r time with this r	equest.	MAR 2 3 2010
				1
Sincerely,				DEQ-W&HMD-Kalamazoo
Alex Wallace				

IF TRANSMISSION IS NOT COMPLETE PLEASE CALL AS SOON AS POSSIBLE

4.1.2 March 2008 Phase II Limited Site Investigation

A *Phase II Limited Site Investigation* dated 12 December 2008 (the "Phase II LSI"), documents sampling conducted by Prism in 2008 to investigate soil and groundwater conditions at the site based on findings of the Phase I ESA. Soil samples were collected across much of the site and analyzed for metals, polynuclear aromatic hydrocarbons (PNAs), volatile organic compounds (VOCs), and/or polychlorinated-biphenyls (PCBs). Seven groundwater samples were also collected from monitoring wells installed as part of the Phase II ESA. The groundwater samples were analyzed for metals, VOCs, and PNAs. A summary of the Phase II ESA findings is provided below.

Soil Investigation

- In March 2008, 17 soil samples were collected at various depths (0.5 to 4 feet) throughout the site.
- All of the samples were analyzed for metals and results of the analysis indicated numerous exceedances of generic residential cleanup criteria for arsenic, cadmium, chromium, lead, selenium, silver, mercury, and zinc.
- Thirteen of the soil samples were analyzed for VOCs. Results for VOCs indicate naphthalene was detected above generic residential cleanup criteria in three samples (HA-2, HA-3, and HA-12). Ethylbenzene, toluene, n-propylbenzene, xylenes, 1,2,4 TMB, and 1,3,5 TMB were all detected in one sample (HA-2) above select generic residential cleanup criteria. According to Mr. Todd Franklin, soils associated with the HA-2 area were excavated and managed at an off-site disposal facility in Spring 2009.
- Fifteen samples were analyzed for PNAs. Results of the PNA analysis
 indicate one sample (HA-2) exceeded generic residential cleanup criteria
 for phenanthrene.
- Three samples were analyzed for PCBs. One sample (HA-12) exceeded generic residential cleanup criteria for Aroclor 1016. According to Mr. Todd Franklin, soils associated with this sample were reportedly excavated and managed at an off-site disposal facility in Spring 2009.

Groundwater Investigation

 The 2008 groundwater investigation included sampling at seven temporary monitoring well locations and a potable well located on site. An additional four wells/piezometers were installed in June and September 2008.

- Each sample was analyzed for metals, VOCs, and PNAs.
- Lead was detected in two samples (HA-11 and HA-16) at concentrations exceeding the generic drinking water cleanup criteria. These temporary wells were located along the west property boundary. To determine if impacted groundwater was migrating off-site, Prism determined the groundwater flow direction and conducted additional sampling at the west property boundary. The flow direction was determined to be west/southwest. Four additional temporary wells were installed (HA-17, HA-18, PZ-1, and PZ-2) at or near the downgradient property line. Based on additional sampling at these locations (and the turbidity in the samples which allowed for dissolved lead analysis), it was determined that lead impacted groundwater is not present at the downgradient property boundary.
- Sampling results indicate no other exceedances of Part 201 generic residential cleanup criteria for other samples for metals, VOCs, or PNAs.
- No impacts were detected in the potable well sample.

Laboratory reports with complete analytical results of the March 2008 Phase II samples are included in Appendix D. A figure depicting the sample locations is also included in Appendix D. Further discussion on exceedances of MDEQ Part 201 cleanup criteria is presented below in Section 4.2.

4.1.3 ERM 2009 Phase I ESA Update

ERM completed an update to Prism's 2008 Phase I ESA in July 2009 (the "Phase I ESA Update"). The Phase I ESA Update was conducted in order to identify RECs that may have arisen since the 2008 Phase I ESA was completed. A copy of the Phase I ESA Update is included in Appendix E. The Phase I ESA Update identified the following recognized environmental conditions:

Recognized Environmental Conditions

- Possible impact associated with historic scrap metal processing operations (e.g., oils, metals, coolants) and visible releases (e.g., staining, pooled liquids/oils) throughout the site.
- Possible impact associated with discharge of storm water from a truck dock to the adjacent ground surface (discharge may contain oily runoff).

- Documented contamination on the site per prior environmental studies.
- A reported release of hydraulic oil by Franklin & Son's operations.
 Although soils associated with this release were reportedly removed and managed at an off-site disposal facility, sampling was not performed to verify adequate cleanup.
- Potential releases associated with the diesel ASTs, turnings pad and the associated OWS system.

4.1.4 ERM 2009 Phase II Environmental Site Assessment

A *Phase II Environmental Site Assessment* (the "Phase II ESA") was conducted by ERM in April 2009 in order to evaluate the areas of potential environmental concern that were identified in ERM's Phase I ESA Update and to further document environmental conditions to support this BEA.

The Phase II ESA included collection of 53 surface soil samples across the site and analysis of each sample for metals present at concentrations of concern in the Prism Phase II LSI (i.e., lead and manganese). Ten shallow borings were also installed in areas of concern based on the Phase I ESA Update (i.e., at the turnings pad and OWS, diesel ASTs, and the truck dock drainage area) with samples analyzed for a full suite of metals (Michigan 10 plus manganese), VOCs, semi-volatile organic compounds (SVOCs), and PCBs. A summary of the results of the April 2009 Phase II ESA sampling is provided below. Soil sampling results are presented in Table 4-1 in Appendix C. Figure 2 (Appendix A) is a map showing the sample locations. Copies of laboratory reports are included in Appendix G. Copies of the boring logs are also included as Appendix H.

Soil Investigation

In April 2009, 53 surface soil samples were collected throughout the site from one to two feet below ground surface (bgs). Analytical results indicated lead and manganese were detected in a number of samples above applicable Part 201 generic residential cleanup criteria (GRCC).

The ten shallow (<10 feet bgs) soil borings (HAB-1 through HAB-10) were advanced in areas of concern as noted above. Five "worst-case" samples based on PID screening and observations noted in these ten borings were collected from HAB-1, HAB-4, HAB-5, HAB-8, and HAB-9 for analysis of the parameters listed above. Results from the soil borings indicate silver and 1,2,4 TMB were detected above applicable GRCC.

See Section 4.2 below for a detailed discussion of the criteria exceedances from the 2009 Phase II ESA samples.

4.2 EXCEEDANCES OF PART 201 RESIDENTIAL CRITERIA

The soil samples with concentrations exceeding Part 201 generic residential cleanup criteria are presented in Table 4-1 in Appendix C, and in Table 1 of the Prism Phase II LSI. The sample locations are depicted in Figure 2 in Appendix A.

The following parameters were detected in soil at concentrations exceeding the GRCC:

- Metals arsenic, cadmium, chromium, lead, selenium, silver, mercury, and zinc.
- **VOCs** ethylbenzene, toluene, n-propylbenzene, xylenes, 1,2,4 TMB, 1,3,5 TMB, and naphthalene.
- SVOCs/PNAs/PCBs Phenanthrene and PCB Aroclor 1016.

The following parameter was detected in groundwater at concentrations exceeding the GRCC (based on the Prism Phase II LSI):

Metals - lead

These exceedances document the subject site as a "facility" per Part 201. The presence of metals in soil and groundwater as contaminants, and within hazardous substances to be used in future operations at the site, justifies the Category "S" designation of this BEA.

It should be noted that results for manganese are compared to the source-size modified particulate soil inhalation criterion (PSIC) since the site size (approximately 14 acres) is greater than that assumed for development of the generic criterion (½ acre). The source-size modified criterion for the site (945 ppm) was calculated per MDEQ Remediation and Redevelopment Division Operational Memorandum #1, Attachment #7, Technical Support Document, Part 201 Generic Soil Inhalation Criteria For Ambient Air, July 2007 (the "TSD"). The source-size modified criterion is based on the following calculations:

- 1. The Part 201 generic (½ acre) industrial PSIC for manganese is 1,500 ppm. Based on a 14 acre site, the screening level modifier from Table 1 of the TSD is 0.58 and the screening level value is 870 ppm (i.e., 1,500 ppm x 0.58).
- 2. The extent/area of samples with manganese concentrations that exceed this screening level is approximately half of the site (~7 acre

- source area size). Referring back to Table 1, the source size modifier for this area is ~ 0.63 .
- 3. Based on a source size modifier of 0.63, the source size modified PSIC for manganese is 945 ppm (i.e., 1,500 ppm x 0.63).

4.3 EXTENT AND PROJECTED FATE OF CONTAMINATION

With respect to site soils, sampling performed at the site indicates metals, VOCs, SVOCs, and PCBs are present in site soils. The metals were detected throughout the site and are expected to be from normal scrap recycling operations. Little degradation of metals is expected to occur in soil. Lead was detected in groundwater samples beneath the site, which may have leached from site soils and migrated to the groundwater. [It should be noted that Franklin conducted soil removal activities to remove the suspected source of lead in groundwater (i.e., soils at the west side of the site in the former motor block storage area)]. Other metals detected in site soils could also undergo leaching and migrate to groundwater although there is no indication that this is likely to occur based on groundwater data.

The VOCs and SVOCs will likely degrade over time and may potentially leach into the groundwater. Soil exhibiting elevated concentrations of PCBs identified in the Prism Phase II LSI (i.e., from the HA-12 area) has since been excavated and properly managed offsite. Remaining PCBs will likely not degrade over time or leach into the groundwater.

- The full extent of the metals impact in site soils has not been determined. Due to the size and nature of the scrap operations at the site, it is suspected that metals are likely prevalent throughout site surface soils.
- The extent of lead impact in groundwater has been defined to the west-central portion of the site and has not migrated off-site based on 2008 data.
- The full extent of VOCs and SVOCs has not been identified. It is likely
 these contaminants are most prevalent in the northern portion of the site
 where the scrap automobiles reside, near the turnings pad, and near the
 ASTs on the southern portion of the property.
- The full extent of remaining PCBs has not been defined.

Table 4-1 Summary of Soil Analyses Franklin & Sons Industrial Scrap - Dowagiac, Michigan

		1		Part 201 Generic Ci	eanup Criteria			· · · · · · · · · · · · · · · · · · ·	Samp	le ID and Conce	Iration					<u> </u>						
Parameter	CAS Number	Statewide Defaul Background Levels	Drinking Water	Groundwater / Surface Water Interface	Residential		t Industrial Direct Contact Criteria	HAB-1, 0'-1' 04/24/2009	HAB-4, 1'-2' 04/24/2009	HAB-5, 8'-9' 04/27/2009	HAB-8, 1'-2' 04/27/2009	HAB-9, 4'-5' 04/27/2009	SB-1 04/23/2009	SB-2 04/23/2009	SB-3 04/23/2009	SB-4 04/23/2009	SB-5 04/23/2009	SB-6 04/23/2009	SB-7 04/23/2009	SB-7 Duplicate 04/23/2009	SB-8 04/23/2009	SB-9 04/23/2009
Metals (mg/Kg)				The state of the s																		
Arsenic	7440382	5.8	4.6	70	720	7.6	37	ND	1.4	3.9	1.4	1.8	ns	ns	ns	ns	ns	ns	กร	ns	ns	ns
Barium	7440393	75	1,300	440	3.30E+03	37,000	1.3E±05	ND	26	22	34	17	rts	ns	ns	ns	ns	ns	ns	ns	ns	nş
Cadmium	7440439	1.2	6.0	3.6	1,700	550	2,100	NĐ	3.5	0.083	ND	ND	nş	ns	ns	กร	ns	ns	กร	ns	ns	nş
Chromium, total	7440473	18	30	3.3	260	2,500	9,200	ND	6.7	4.8	3.9	3,6	us	ns	ns	ns	ns	ns	ns	ns	ns	nş
Copper	7440508	32	5,800	75	1.30E+05	20,000	73,000	ND	11	9	7.1	3.8	us	ns	ns	ns	ns	ns ana	ns	ns	ns	ns
Lead (coarse)	7439921	NA	NA	NA	NA	NA	NA	ns	ns	ns	ns	ns	ns	ns	ns	ns	66	270	94	ns	ns	120
Lead (fine)	7439921	NA	NA	NA	NA	NA	NA	ns	ns	ns	ns	กร	ns	ns	ns	ns	93	200	170	ns	ns	270 180
Lead (total - calculated)	7439921	NA	NA	NA	NA	NA	NA	กร	ns	ns	ns	ns	ns	ns	ns	ns 14	76 90	250 170	100 120	ns 75	ns 61	160
Lead (total)	7439921	21	700	2,800	1.00E+05	400	900	ND	13	5.1	4.5	3.7	10	61	69	14		Seal and contains for the seal of the	520	75 480	390	390
Manganese	7439965	440	1.0	56	945 *	25,000	90,000	ND	90	160	200	160	310	980	1,700	150	1,300	500				ns
Mercury	Varies	130	1.7	0.05	2.00E+04	160	580	I\S	ND	ND	ND	ND	ns	ns	rs	ns	ns	ns ns	ns	ns ns	ns ns	115
Selenium	7782492	0.41	4.0	0.4	1.30E+05	2,600	9,600	ND	ND	0.16	0.15	ND	ns	ns	ns	ns	ns	กร	ns ns	ns		ns
Silver	7440224	1.0	4.5	0.1	6,700	2,500	9,000	ND	0.82	ND	ND	ND	ns	กร	ns	ns	ns	ns ns	ns ns	ns ns	ns ns	ns
Zinc	7440666	47	2,400	170	NA	1.70E+05	6.3E+05	ND	46	20	14	9.9	ns	ns	rs.	ns	ns	RS	115	115	115	113
PCB's (µg/Kg)											NIS.	110							ns	ns	ns	ns
Aroclor 1242	1336363	NA	NA	NA	5.20E+06	4,000	4,000	ND	ND	95	ND	ND	ns	ns	ns	ns	กร	ns	115	115	115	16
MDEQ 625/8270 SVOCs (µg/Kg)											140	NB							ns	ns	25	ns
Phenanthrene	85018	NA	56,000	5,300	6.70E+06	1.60E+06	5.20E+06	ND	ND	1,200	ND	ND	ns	ns	ns	ns	ns	ns ns	กร	ns	ns ns	ns ns
Pyrene	129000	NA	4.80E+05	NA	6.70E+09	2.90E+07	8.40E+07	ND	ND	1,800	ND	ND .	ns	ns	ns	ns	ns	nş	105	115	115	115
MDEQ 8260 VOCs (µg/Kg)																						
1,2,4-Trimethylbenzene	95636	NA	2,100	570	8.2E+10	1.1E+05	1.1E+05	210	ND	2,500	ND	36	ns	ns	ns	ns	ns	ns	ns	ns	nş	ns
1,3,5-Trimethylbenzene	103678	NA	1,800	1,100	8.2E+10	9.4E+04	9.4E+04	170	ND	880	ND	ND	ns	ns	ns	ns	ns	ns	ns	ns	ns or	IIS De
2-Butanone	78933	NA	260,000	44,000	6.7E+10	2.7E+07	2.7E+07	ND	ND	170	ND	ND	វាន	ns	ns	ns	ns	115	ns	ns	ns	115
2-Methylnaphthalene	91576	NA	57,000	NA	NA	8.1E+06	2.6E+07	3,700	ND	4,600	ND	ND	ns	ns	ns	ns	ns	115	115	ns	ns ne	IIŞ De
Ethylbenzene	100414	NA	1,500	360	1.0E+10	1.4E+05	1.4E+05	ND	ND	120	ND	40	ns	ns	ns	ns	ns	115	115	ns	ns	115
sopropylbenzene	98828	NA	91,000	NA	5.8E+09	3.9E+05	3.9E+05	ND	ND	250	ND	100	ns	ns	ns	ns	ns	115	115	113	ns	115
p-Xylene	1330207	NA	NA	NA	NA	NA	NA	ND	ND	360	ND	43	ns	ns	ns	ns	ns	ns	115	ns	ns	115
Propylbenzene	103651	NA	1,600	NA	1.3E+09	2.5E+06	8.0E+06	ND	ND	420	ND	ND	ns	ns	ns	ns	ns	ns	115	ns ns	ns	115
Naphthalene	91203	NA	35,000	870	2.0E+08	1.6E+07	5.2E+07	ND	180	ND	ND	ND	ns	ns	ns	ns	ns	ns	115	ns pr	ns	113
o-Xylene	1330207	NA	NA	NA	NA	NA	NA	43	ND	300	ND	ND	ns	ns	ns	ns	ns	ns	ns	IIS ns	rs ee	112
Toluene	108883	NA	16,000	2,800	2.7E+10	2.5E+05	2.5E+05	30	ND	41	ND	ND 67	ns	ns	ns	ns	ns ns	ns ns	ns ns	ns ns	ns ns	ns.
Xylenes, Total	1330207	NA	5,600	700	2.9E+11	1.5E+05	1.58+03	ND	ND	660	ND	67	ns	ns	ns	ns	ns	118	115	115	112	113

Notes

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 01/23/06.
- GSI = Groundwater/surface water interface.
- · For simplification, only parameters detected are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA indicates the referenced cleanup criterion is not available/not set.
- ND Indicates the parameter was not detected.
- ns Indicates the sample was not analyzed for that parameter.
- * Indicates the site specific criteria for that parameter.
- Values in red indicate residential direct contact exceedances.
- Values in blue indicate residential particulate inhalation exceedances.
 Green-shaded values exceed the referenced residential drinking water protection criteria.
 - Outlined values exceed the referenced GSI protection criteria.
- Cross-Hatched values exceed the referenced Direct Contact criteria.

Table 4-1 Summary of Soil Analyses Franklin & Sons Industrial Scrap - Dowagiac, Michigan

				Part 201 Generic Cl	eanup Criteria																	
Parameter	CAS Number	Statewide Defaul Background Levels	Residential Drinking Water Protection Criteria	Groundwater / Surface Water Interface Protection Criteria	Particulate Soil	Residential Direct a Contact Criteria		SB-10 04/23/2009	SB-11 04/23/2009	SB-12 04/23/2009	SB-13 04/23/2009	SB-14 04/23/2009	SB-15 04/23/2009	SB-16 04/23/2009	SB-16 Duplicate 04/23/2009	SB-17 04/23/2009	SB-18 04/23/2009	SB-19 04/23/2009	SB-20 04/23/2009	SB-21 04/23/2009	SB-22 04/23/2009	SB-23 04/23/2009
Metals (mg/Kg)																						
Arsenic	7440382	5.8	4.6	70	720	7.6	37	ns	ns	ns	ns	ns	ns	กร	ពទ	ns	ns	ns	ns	ns	пş	ns
Barium	7440393	75	1,300	440	3.30E+05	37,000	1.3E+05	rs.	ns	ns	ns	ns	ns	ns	กร	n\$	ns	ns	ns	ns	กร	ns.
Cadmium	7440439	1.2	6.0	3.6	1,700	550	2,100	ns	ns	ns	RS	ns	กร	กร	กร	ns						
Chromium, total	7440473	18	30	3.3	260	2,500	9,200	ពទ	ns	ns	rs	ns	ns	ns	ns	ns						
Copper	7440508	32	5,800	75	1.30E+05	20,000	73,000	กร	กร	ns	ns	ns	ns	ns	ns	ns	ns.	ns	ns	ns	ns	ns
Lead (coarse)	7439921	NA	NA	NA	NA	NA	NA	140	ns	ns	nş	21	กร	ns	28	ns	ns	ns	150	ns	ns	ns
Lead (fine)	7439921	NA	NA	NA	NA	NA	NA	240	ns	ns	uè	200	ns	ns	120	ns	ns	ns	240	rt5	ns	ns
Lead (total - calculated)	7439921	NA	NA	NA	NA	NA	NA	180	ns	ns	ns	85	ns	ns	64	ns	ns	ns	180	11.5	ns	ns
Lead (total)	7439921	21	700	2,800	1.00E+03	400	900	140	4.2	2.6	4.1	110	5.1	48	180	3.4	7.1	60	140	4.2	4.2	24
Manganese	7439965	440	1.0	56	945 *	25,000	90,000	1,400	170	92	140	3,500	470	1,700	1,300	140	180	330	820	180	170	920
Mercury	Varies	130	1.7	0.05	2.00E+04	160	580	ns	ns	rts	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Selentum	7782492	0.41	4.0	0.4	1.30E+05	2,600	9,600	ns	ns	กร	ns	กร	ns	ns	ns							
Silver	7440224	1.0	4.5	0.1	6,700	2,500	9,000	ns	ns	ns	กร	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Zinc	7440666	47	2,400	170	NA	1.70E+05	6.3E+03	ns	ns	ns	ns	ns	ns	ns.	ns	ns	ns	IIS	ns	ns	ns	ns
PCB's (µg/Kg)																						
Aroclor 1242	1336363	NA	NA	NA	5.20E+06	4,000	4,000	ns	ns	ns	ns	ns	ns	ns .	ns	ns	ns	ns	กร	ns	ns	ns
MDEQ 625/8270 SVOCs (µg/Kg)																						
Phenanthrene	85018	NA	56,000	5,300	6.70E+06	1.60E+06	5.208+06	πs	ns	ns	ns	ns	ns	ns	ns	ns						
Pyrene	129000	NA	4.80E+05	NA	6.70E+09	2.90E+07	8.408+07	กร	ns	R\$	ns	ns	ns	ns	ns	ns						
MDEQ 8260 VOCs (µg/Kg)																						
1,2,4-Trimethylbenzene	95636	NA	2,100	570	8.2E+10	1.1E+05	1.1E+05	ns	ns	ns	ns	ns	ns	ns	ณ							
1,3,5-Trimethylbenzene	103678	NA	1,800	1,100	8.2E+10	9.4E+04	9.4E+04	ns	ns	ns	ns	ns	ns	ns	rıs							
2-Butanone	78933	NA	260,000	44,000	6.7E+10	2.7E+07	2.7E+07	ns	ns	nş	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	πs
2-Methylnaphthalene	91576	NA	57,000	NA	NA	8.1E+06	2.6E+07	ns	ns	ns.	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Ethylbenzene	100414	NA	1,500	360	1.0E+10	1.4E+05	1.4E+05	ns	ns	ns	กร	ns	ns	ns	ns							
opropylbenzene	98828	NA	91,000	NA	5.8E+09	3.9E+05	3.9E+05	ns	ns	ns	ns	ns	กร	ns	กร	ns						
2-Xylene	1330207	NA	NA	NA	NA	NA	NA	пs	ns	กร	ns	ns	ns	ns	ns	กร	ns	ns	ns	ns	ns	ns
Propylbenzene	103651	NA	1,600	NA	1.3E+09	2.5B+06	8.0E+06	ПS	ns	ns	ns	ns	ns	ns	t/s	กร	ns	RS	ns	กร	ns	ns
Naphthalene	91203	NA	35,000	870	2.0E+08	1.6E+07	5.2E+07	ns	ns	ns	ns	ns	ns	ns	ns							
o-Xylene	1330207	NA	NA	NA	NA	NA	NA	กร	ns	ns	ns	rs.	пs	กร	ns	ns	กร	กร	ns	ns	ns	ns
Toluene	108883	NA	16,000	2,800	2.7E+10	2.5E+05	2.5E+05	กร	ns	ns	กร	rs.	nş	ns	res	ns	กร	ns	ns	ns	กร	ns
Xylenes, Total	1330207	.NA	5,600	700	2.9E+11	1.5E+05	1.5E+05	ns	ns	ns	ns	กร	nş	ns	ns	ns	ns	เเร	ns	เเร	ns	ns

Notes

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 01/23/06.
- GSI = Groundwater/surface water interface.
- For simplification, only parameters detected are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA Indicates the referenced cleanup criterion is not available/not set.
- ND Indicates the parameter was not detected.
- ns Indicates the sample was not analyzed for that parameter.
- * Indicates the site specific criteria for that parameter.
- Values in red indicate residential direct contact exceedances.
- Values in blue indicate residential particulate inhalation exceedances.

 Green-shaded values exceed the referenced residential drinking water protection criteria.
 - Outlined values exceed the referenced GSI protection criteria.
- Cross-Hatched values exceed the referenced Direct Contact criteria.

Table 4-1 Summary of Soil Analyses Franklin & Sons Industrial Scrap - Dowagiac, Michigan

				Part 201 Generic Cl	eanup Criteria																	
Parameter	CAS Number	Statewide Defaul Background Levels	t Residential Drinking Water Protection Criteria	Groundwater / Surface Water Interface Protection Criteria		Residential Direct Contact Criteria		SB-24 04/23/2009	SB-25 04/23/2009	SB-25 Duplicate 04/23/2009	SB-26 04/23/2009	SB-27 04/23/2009	SB-28 04/23/2009	SB-29 04/23/2009	SB-30 04/23/2009	SB-31 04/23/2009	SB-32 04/23/2009	SB-33 04/23/2009	SB-34 04/23/2009	SB-35 04/23/2009	SB-35 Duplicate 04/23/2009	SB-36 04/23/2009
Metals (mg/Kg)																						
Arsenic	7440382	5.8	4.6	70	720	7.6	37	ns	ns	ns	ns	กร	ns	ns	ns	กร	វាទ	ns	ns	ns	пs	ns
Barium	7440393	75	1,300	440	3.30E+05	37,000	1.3E+05	ns	ns	rış.	ns	пş	ns									
Cadmium	7440439	1.2	6.0	3.6	1,700	550	2,100	ns	ns	ns	ns	ns	ns	пs	ns	ns						
Chromium, total	7440473	18	30	3.3	260	2,500	9,200	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Copper	7440508	32	5,800	75	1.30E+05	20,000	73,000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Lead (coarse)	7439921	NA	NA	NA	NA	NA	NA	ns	ns	ns	ns	ns	nş	110	250	ns	ns	440	580	730	ns	120
Lead (fine)	7439 9 21	NA	NA	NA	NA	NA	NA	ns	ns	ns	ns	ns	пs	280	410	ns	ns	560	560	1,000	ns	480
Lead (total - calculated)	7439921	NA	NA	NA	NA	NA	NA	ns	ns	ns-	ns	ns	пs	170	310	ns	ns	480	570	850	ns	330
Lead (total)	7439921	21	700	2,800	1.00E+05	400	900	16	5.6	32	64	9.5	2.3	110	210	3.5	22	370	260	980	880	380
Мапдапеse	7439965	440	1.0	56	945 *	25,000	90,000	2,500	360	2,400	3,400	2,800	62	3,100	850	170	810	1,300	2,200	3,100	3,600	3,400
Mercury	Varies	130	1.7	0.05	2.00E+04	160	580	ns	ns	nş	ns	пs	ns	ns								
Selenium	7782492	0.41	4.0	0.4	1.30E+05	2,600	9,600	ns	ns	nş	ns	ns	ns	ns	ns	ns	กร	ns	ns	ns	ns	ns
Silver	7440224	1.0	4.5	0.1	6,700	2,500	9,000	ns	ns	ns	nş	пş	ns	ns								
Zinc	7440666	47	2,400	170	NA	1.70E+05	6.3E+05	ns	ns	ns	ns	nş	ns	ns	пs	ns	ns	ns	ពុទ	ns	ns	ns
PCB's (µg/Kg)																						
Aroclor 1242	1336363	NA	NA	NA	5.20E+06	4,000	4,000	ns	ns	ns	ns	กร	ns	กร								
MDEQ 625/8270 SVOCs (µg/Kg)																						and the second
Phenanthrene	85018	NA	56,000	5,300	6.70E+0 6	1.60E+06	5.20E+06	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	กร	ns	ns	ns
Pyrene	129000	NA	4.80E+05	NA	6.70E+09	2.90E+07	8.40E+07	ns	ns	ns	ns	กร	ns	ns	กร	ns	ns	ns	nş	ns	ns	ns
MDEQ 8260 VOCs (µg/Kg)																						
1,2,4-Trimethylbenzene	95636	NA	2,100	570	8.2E+10	1.1E+05	1.1E+05	ns	ns	ns	ns	ns	ns	រាទ	ns	rs.						
1,3,5-Trimethylbenzene	108678	NA	1,800	1,100	8.2E+10	9.4E+04	9.4E+04	ns	ns	ns	ns	ns	ns	ns	กร	ns	ns	ns	ns	ns	ns	пs
2-Butanone	78933	NA	260,000	44,000	6.7E+10	2.7E+07	2.7E+07	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
2-Methylnaphthalene	91576	NA	57,000	NA	NA	8.1E+06	2.6E+07	กร	ns	ns	ns	ns	ns	กร	ns	ns						
Ethylbenzene	100414	NA	1,500	360	1.0E+10	1.4E+05	1.4E+05	ns	rts	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	กร	ns
opropylbenzene	98828	NA	91,000	NA	5.8E+09	3.9E+05	3.9E+05	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	กร	ns
p-Xylene	1330207	NA	NA	NA	NA	NA	NA	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	пs	กร	ns	ns
n-Propylbenzene	103651	NA	1,600	NA	1.3E+09	2.5E+06	8.0E+06	ns	ns	ns	ns	ns	nş	ns	ns							
Naphthalene	91203	NA	35,000	870	2.0E+08	1.6E+07	5.2E+07	ns	ns	ns	ns	ns	ns	ns	ns	ns	rus.	ns	ns	ns	ns	ns
o-Xylene	1330207	NA	NA	NA	NA	NA	NA	ns	ns	ns	ns	กร	ns	ns	ns	ns	ns	пs	ns	ns	ns	ns
Toluene	108883	NA	16,000	2,800	2.7E+10	2.5E+05	2.5E+05	ns	ns	nŝ	ns	ns	ns	ns	ns	กร	กร	กร	ns	ns	ns	ns
Xylenes, Total	1330207	NA.	5,600	700	2.9E+11	1.5E+05	1.5E+05	ns	ns	ns	ns.	រាទ	ns	ns	ns	ns	กร	ns	ns	ns	ns	ns

Notes:

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 01/23/06.
- GSI = Groundwater/surface water interface.
- For simplification, only parameters detected are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA Indicates the referenced cleanup criterion is not available/not set.
- ND Indicates the parameter was not detected.
- ns Indicates the sample was not analyzed for that parameter.
- * Indicates the site specific criteria for that parameter.
- Values in red indicate residential direct contact exceedances.
- Values in blue indicate residential particulate inhalation exceedances.
 - Green-shaded values exceed the referenced residential drinking water protection criteria.
 - Outlined values exceed the referenced GSI protection criteria.
- Cross-Hatched values exceed the referenced Direct Contact criteria.

Table 4-1 Summary of Soil Analyses Franklin & Sons Industrial Scrap - Dowagiac, Michigan

3	5,m2r			Part 201 Generic C	eanup Criteria																	
Parameter	CAS Number	Statewide Defaul Background Levels	Drinking Water	Groundwater / Surface Water Interface Protection Criteria	Particulate Soil		t Industrial Direct Contact Criteria	SB-37 04/23/2009	\$8-38 04/23/2009	SB-39 04/23/2009	SB-40 04/23/2009	SB-41 04/27/2009	SB-41 Duplicate 04/27/2009	SB-42 04/27/2009	SB-43 04/27/2009	SB-14 04/27/2009	SB-45 04/27/2009	SB-46 04/27/2009	SB-47 04/27/2009	SB-48 04/27/2009	SB-49 04/27/2009	SB-50 04/27/2009
Metals (mg/Kg)																						
Arsenic	7440382	5.8	4.6	70	720	7.6	37	ns	กร	ns	กร	ns	ns	ns	ns	ns	រាន	ns	ns	ns	กร	ns
Barium	7440393	75	1,300	440	3.30E+05	37,000	1.3E+05	กร	ns	ris.	ns	กร	ns	ns	ns	ns	กร	ns	ns	กร	ns	ns
Cadmium	7440439	1.2	6.0	3.6	1,700	550	2,100	ns	ns	ns	ns	ns	ns	กร	ns	ពន	ns	ns	ns	ns	ns	ns
Chremium, total	7440473	18	30	3.3	260	2,500	9,200	กร	ns	ns	กร	ns	ns	กร	ns	nş	ns	ns	กร	ns	ns	ns
Соррег	7440508	32	5,800	75	1.30E+05	20,000	73,000	กร	กร	ns	ns	ns	ns	ns	ns	пs	ns	ns	ns	กร	ns	ns
Lead (coarse)	7439921	NA	NA	NA	NA	NA	NA	กร	860	1,500	67	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Lead (fine)	7439921	NA	NA	NA	NA	NA	NA	ns	1,200	350	690	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	гs
Lead (total - calculated)	7439921	NA	NA	NA	NA	NA	NA	กร	1,700	1,100	290	ns	ns	ns	ns	ns	ns	ns	nş	ns	ns	ns
Lead (total)	7439921	21	700	2,800	1.00E+05	400	900	13	5,200	1,000	140	340	3.1	480	4,600	710	210	18	180	18	80	12
Manganese	7439965	440	1.0	56	945 *	25,000	90,000	250	1,800	1,300	7,700	2,000	98	1,800	1,500	2,000	2,100	130	980	1,100	1,200	130
Mercury	Varies	130	1.7	0.05	2.00E+04	160	580	ns	ns	ns	ns	ns	ns	ns	ns	กร	ns	ns	ns	ns	ns	ns
Selenium	7782492	0.41	4.0	0.4	1.30E+05	2,600	9,600	ns	ns	กร	ns	ns	ns	กร	ns	ns	ns	n\$	ns	ns	ns	ns
Silver	7440224	1.0	4.5	0.1	6,700	2,500	9,000	กร	ns	ns	ns	ns	ns	ns	ns	ns	ns	nş	ns	rts.	ns	ns
Zinc	7440666	47	2,400	170	NA	1.70E+03	6.3E+05	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	กร
PCB's (µg/Kg)																						
Aroclor 1242	1336363	NA	NA	NA	5.20E+06	4,000	4,000	ns	ns	ns	ns	rış	ns	nş	ns	ns	πs	ns	ns	ns	ns	ns
MDEQ 625/8270 SVOCs (µg/Kg)																						
Phenanthrene	85018	NA	56,000	5,300	6.70B+06	1.60E+06	5.20E+06	ns	ns	nş	ns	rış	ns	nş	ns							
Pyrene	129000	NA	4.80E+05	NA	6.70E+09	2.90E+07	8.40E+07	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	กร	ns
MDEQ 8260 VOCs (µg/Kg)																						
1,2,4-Trimethylbenzene	95636	NA	2,100	570	8.2E+10	1.1E+05	1.1E+05	ns	ns	ns	ns	ΠS	ns	пs	ns	115						
1,3,5-Trimethylbenzene	108678	NA	1,800	1,100	8.2E+10	9.4E+04	9.4E+04	ns	ns	ns	ns	п\$	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
2-Butanone	78933	NA	260,000	44,000	6.7E+10	2.7E+07	2.7E+07	rıs	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
2-Methylnaphthalene	91576	NA.	57,000	NA	NA	8.1E+06	2.6E+07	กร	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Ethylbenzene	100414	NA	1,500	360	1.0E+10	1.4E+05	1.4B+05	ns	ns	ns	n\$	กร	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
'-opropylbenzene	98828	NA	91,000	NA	5.8E+09	3.9E+05	3.9E+05	กร	กร	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	os.	ns	ns
>-Xylene	1330207	NA	NA	NA	NA	NA	NA	ns	กร	กร	ns	ns	пs	ns	กร	ns						
Propylbenzene	103651	NA NA	1,600	NA	1.3E+09	2.5E+06	8.0E+06	ns	กร	ns	ns	ns	пs	ns	ns	กร	ns	ns	ns	ns	ns	ns
Naphthalene	91203	NA NA	35,000	870	2.0E+03	1.6E+07	5.2E+07	ns	ns	ns	ns	ns	пs	ns	ns.	ns						
o-Xylene	1330207	NA NA	NA NA	NA NA	NA	NA	NA	ns	ns	ns	กร	ns	ns	ns	ns	ns	ns	ns	ns	115	ns	ns
Toluene	108883	NA NA	16,000	2,800	2.7E+10	2.5E+05	2.5E+05	ns	ns	ns	ns	ns	ns	ns	กร	ns	ns	ns	ns	ns	ns	คร
Xylenes, Total	1330207	NA NA	5,600	700	2.9E+11	1.5E+05	1.5E+05	ns	ns	ns	กร	ns	ns	ns	ns	ns	ns.	ns	ns	ns	ns	us
	1550407	INM	3,000	700		******				12	113	11.3	113		113	113	10	115	112	10	115	ns

Notes

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 01/23/06.
- GSI = Groundwater/surface water interface.
- For simplification, only parameters detected are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA Indicates the referenced cleanup criterion is not available/not set.
- ND Indicates the parameter was not detected.
- ns Indicates the sample was not analyzed for that parameter.
- * Indicates the site specific criteria for that parameter.
- Values in red indicate residential direct contact exceedances.
- Values in blue indicate residential particulate inhalation exceedances.

 Green-shaded values exceed the referenced residential drinking water protection criteria.

- Outlined values exceed the referenced GSI protection criteria.

- Cross-Hatched values exceed the referenced Direct Contact criteria.

Franklin & Son 30750 Edwards Street Dowagiac, Michigan

REVI	SION	DATE:	2-20-08	APPROVED:	
DATE:	BY:	DRAWN:	8DG	JOB NO.	08.0190

REVISION

BY:

DATE:

APPROVED:

08.0190

JOB NO.

DATE: 9-18-08

DRAWN: BOG

FIGURE 4 POTENTIOMETRIC SURFACE MAP 26 SEPTEMBER EVENT

FRANKLIN & SON 30750 EDWARDS STREET DOWAGIAC, MICHIGAN

REVI	SION	DATE: 9-18-08	APPROVED:
 DATE:	BY:		JOB NO. 08.0190

Table 1 Results of Laboratory Analysis Performed on Soil Samples (Page 1 of 2) Franklin & Soons Industrial Scrap/Steel 50750 Edwards Street Dowaglac, Michigan

ž
ŝ
Š
Ę

Permission Third Third Data	1. 1. 1. 1. 1. 1. 1. 1.	12 12 13 14 15 15 15 15 15 15 15	2	SDBL CHUL CHUL CONT. MA-1 (22) MA-2 (0.25) MA-2 (0.25) MA-3 (0.25)	03/04/08	5.8 4.6 7.6 70(X) 3.7 3.0 1.6 1.7 3.5 5.54 1.3 56.8	75 1,300 37,000 (6,20 40 280 16 57 21 120 12 300	1.2 6 550 (G.X) ND 0.53 ND CM CM 5.25	18 30 2,500 33 8.1 548 3.7 5.8 7.2 3.2 3.3 100 1.0	5,800 20,000 (G) 6.5 38 2.7 (10 5.1 200 2.7 4.0	21 700 400 (G.X) 5.8 80 2.5 44 0.2 ND 1.4	0.41 4 2,000 OV 0.50 ND ND ND ND 0.29 ND 0.29 ND 0.29	0.13 17 100 0.05 (M) ND ND ND ND 0.05 (M) ND	47 2 400 170,000 (G) 19 140 8.9 35 15 33.00 9.3 1,000	03H2/08 03H2/08 03H2/08 03H2/08 03H2/08 03H2/08 03H2/08	NA 620,000 56,000,000 NA NT NC3,300 ND	NA 157 000 10 ND	NA 5,500 1,600,000 1D NT NA 10,2,900 NA ON	NA 41:00 (220.000,000 ID NT NVT.4.000 ND ND ND ND ND ND NT 1.100 N	OO2 TIN YN TIN 2000 CN (008'1) CN (008'1) CN (000'1) CN TIN TIN 2000'S TIN YN	NA NLL 20,000 NLL NT ND2,760) ND ND2,800 ND ND2,700) ND ND2,700) ND ND2,700) ND ND2,700)	NA NIL 200,000 NLL NT ND(2,500) ND ND(2,700) ND ND(2,500) ND ND(2,400)	NA NIL 2,000,000 NIL NI NIT NDC1,000) ND ND ND ND NDC1,000) ND NDC1,000)	NA 730,000 46,000,000 5,500 NT ND(1,700) ND ND 1,800 ND 1,800	NA 380,000 27,000,000 5,300 NT 2,400 ND 630 ND	CIN	NA 55.000 1.500.000 5.300 NT 6.000 ND 7.300 ND 7.400 ND 3.400	03/1/08	NA NIL 4,000 NL NT NT NT NT NT ND	NA NIL 4,000 NIL N N NI	NA NII ADDO NIL NT NT NT NT NT NT NT NO	NA NII 4,000 NII NI	NA NIL 4000 NIL NT NT NT NT NT NT NT 2,000	NA NIL 4,000 I MLI NT NT NT NT NT ND I	LC and analyzed by oiled Analysical, Inc. and ALS Liboratory Group of Holland, Michigan.
1,	1	2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	DWP DC CSI NACICAL RANCES STRAINS GENERALS GENERALS GENERALS CONTRAINS GENERALS CONTRAINS	03/04/08	4,6 7,6 70(X) 3.7 3.0 1.6 1.7 3.5 5.4 1.3 56.8	1,300 37,000 (6,X) 40 280 16 57 21 120 12 300	6 550 (GX) ND 0.53 ND GN (GX) ND 32.	30 2,500 33 8.1 54 3.7 5.8 7.2 32 3.3 190 m	5,800 20,000 (G) 6.5 38 2.7 (10 5.1 200 2.7 4.0	700 400 (6.K) 5.8 80 2.5 4.2 2.6 5.4 ND 1.4	2.0 ON ON ON ON ON ON ONE OF OR ONE OF OR	ON O	2,400 170,000 (G) 19 140 8.9 35 15 33,000 9.3 1,000	03H2/08 03H2/08 03H2/08 03H2/08 03H2/08 03H2/08 03H2/08	0N	30. 000 03. 000 04. 000 NT NY2. 7000 ND	5,900 1,800,000 iD NT ND(2,900) ND ON ON ON ON ON ON ON	00, 100 ON	0000 NUL 2:000 N	NLL 20,000 NLL NT ND2,760) ND ND2,900) ND ND2,700) ND ND2,500)	NLL 200,000 NLL NT ND(2,500) ND ND(2,700) ND ND(2,500) ND ND(2,500)	NIL 2,000,000 NIL NI NO(1,809) ND (1,809)	730,000 46,000,000 5,500 NT ND(1,700) ND ND ND ND 1,900 ND 1,900	390,000 27,000,000 5,300 NT 2,400 ND 630 ND ND ND ND ND ND 1,500 ND ND 1,500)	35,000 000 000 000 NT 12,000 ND ND ND ND 000,000 16,000,000 ND	56,000 1,000,000 5,300 NT 6,000 ND 1,300 ND 7,400 ND 3,400 ND 3,400 ND 3,300 ND 3,400	03/1/08	CN IN IN IN IN IN OCCO	N N N N N N N N N N N N N N N N N N N	NI 4 000 NL NT ND	ON THE ACCOUNTS NT	NLL 4,000 NLL NT NT NT NT NT NT 2,000	NIL 4,000 NIL NT NT NT NT NT NT ND	analyzed by outab Annydent inc. and ALS Laboratory Group of Holland, Michgan.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	88 5 5 7 8 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8	88 5 5 7 8 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8	DC CSS CANTAINS CONTAINS CONTAINS CONTAINS CONTAINS CONTAINS CONTAINS	03/04/08	7.6 70(X) 3.7 3.0 1.6 1.7 3.5 5.4 1.3 5.9	37,000 (G,X) 40 280 16 57 21 120 12 300	25 CN 25 ON CN ON ST ON (C/S) 055	2,500 33 8.1 54 3.7 5.8 7.2 3.2 3.3 3.00	20,000 (G) 6.5 38 2.7 10 5.1 800 2.7 450	400 (G.X) 5.8 80 2.9 46 34 34 ND 1.4	920 ON	ON ON \$8.0 ON ON ON ON (M) 50.0 OBT	170,000 (G) 19 140 8.9 35 15 3300 9.3 1,000	03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08	ON O	GN GN GN GN GN GN GN TN 000 4	ID NT ON ON ON ON TO OIL	00 0N ON	2,000 NIL NT ND(1,700) ND (208,1) ND (1,000) ND LIN (200,1)	20,000 NLL NT ND2,760) ND ND2,800) ND ND2,700) ND ND2,700) ND ND2,700) ND ND2,700) ND ND2,800) ND ND2,800)	200,000 NLL NT ND(2,500) ND ND(2,700) ND ND(2,500) ND ND(2,500)	2,000,000 NIL NT ND(2,000) ND ND ND(2,000) ND ND(2,000) ND ND(2,000)	46,000,000 5,500 NT ND(1,700) ND ND ND ND 1,800 ND 1,800	5,300 NT 2,400 ND 630 ND	GN GN GN GN GN GN GN 12,000 TL 17, 028	5,300 NT 6,000 ND 1,300 ND 3,300 ND 3,400	03/1/08	ON IN IN IN IN TH	4,000 NLL NT	4 DOO N.L NT NT NT NT NT NO	4,000 NII. NT NT NT NT NT NI 4,000	4 000 NLL NT NT NT NT NT 2,000	A.000 NIL NT	ed-lab Annystent fre, and ALS Laboratory Group of Holland, Midhyan.
Comparison Com	Communication Communicatio	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	MA-1 (27) MA-2 (0.15) MA-3 (0.5) MA-	03/04/08	3.7 3.0 1.6 1.7 3.5 5.44 1.3 5.3	40 280 16 57 21 120 12 300	ND 0.53 ND NO ND 5.5 ND 2.	8.1 54 3.7 5.8 7.2 120 3.3 100	6.5 38 2.7 10 5.1 500 2.7 430	5.8 80 2.9 4.6 9.4 2.0 0.30 1.4 1.4 ND 1.4	35.0 GM GM GM GM 44.0 GM	ON ON \$8.0 ON ON ON ON ON	19 140 8.9 35 15 32.00 9.3 1.000	03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08	ON O	GN GN GN GN GN GN GN TN 000 4	ID NT ON ON ON ON TO OIL	ON O	NIL NT ND(1,700) ND (208,1,700) ND (1,700) ND (1,800)	NIT NPG-7509 ND NPG-8009 ND NPG-7009 ND NP	NLL NT ND(2.500) NO ND(2.700) ND ND(2.500) ND ND(2.400)	N.1 N.1 NOT. 3000) N.D	0.8.1 UN 0.9.1 UN UN UN UN 0.01, 1.800	5,300 NT 2,400 ND 630 ND	GN GN GN GN GN GN GN 12,000 TL 17, 028	5,300 NT 6,000 ND 1,300 ND 3,300 ND 3,400	03/1/08	ON IN		ON TY NT NT NT NT NT NT	לא אל א	NT NT NT NT 2,000	ON IN IN IN IN IN IN IN IN	inc. and ALS Luboratory Group of Holland, Midhigan.
Compared Compared Control Co	Mary Carlo Mary Carl	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HAZ (0.5) HAZ (3) HAZ (0.5) HAZ (0.5	03/04/08	3.0 1.6 1.7 3.5 5.44 1.3 5.8	280 16 57 21 120 12 300	0.53 ND ND ND 5.5 ND 2.1	3.7 5.8 7.2 120 3.3 1100	38 2.7 10 5.1 500 2.4 450	5.8 80 2.9 4.6 9.4 2.0 0.30 1.4 1.4 ND 1.4	35.0 GM GM GM GM 44.0 GM	ON ON \$8.0 ON ON ON ON ON	19 140 8.9 35 15 32.00 9.3 1.000	03H2/08 03H2/08 03H2/08 03H2/08 03H2/08 03H2/08	ON ON ON ON ON ON CONTRACTOR ON	ON	DN DN DN DN DN GN GN (306,530)	ON O	(008,1)CM CM (007,1)CM CM (008,1)CM CM (007,1)CM	NDC2,700) ND NDC2,800) ND NDC2,700) ND NDC2,800) ND NDC2,800) ND NDC1,800) ND NDC1,	ND(2,500) NO ND(2,700) NO ND(2,500) ND ND(2,400)	NOC 3000) NO CO NO	008't QN 008't QN QN QN (002't)QN	2.400 ND 630 ND	CN CN CN CN CN CN CN CN CO CT	6,000 ND 1,300 ND 740 ND 3,400 ND 3,400	03/11/08	ON IN IN IN IN IN IN IN		ON THE NATION OF THE PARTY OF T	לא זא זא דא	NT NT NT 2,000	ON IN	utbonatory Group of Holland, Michgan.
STATE STAT	MAX_GRAP_M	2	2	HAZ (0.5) HAZ (3) HAZ (0.5) HAZ (0.5	03/04/08	3.0 1.6 1.7 3.5 5.44 1.3 5.8	16 57 21 120 12 300	ND ND 355 ND 27	3.7 5.8 7.2 120 3.3 100	2,7 10 5.1 500 2.7	NO 020 030 042 NO 1.4	35.0 ON 65.0 ON ON ON	ON CN \$8.0 ON ON CN	8.9 35 15 3300 93 1,000	03H2/08 03H2/08 03H2/08 03H2/08 03H2/08 03H2/08	ON ON ON ON ON	ON ON ON ON ON	GN GN GN GN GN	OCT ON ON ON ON ON	(008,1)CIN CIN (007,1)CIN CIN (008,1)CIN CIN	ND ND(2,900) ND ND(2,700) ND ND(2,600) ND ND(2,600) ND ND(1,500) ND ND(1,500) ND ND(1,500)	ND ND(2,700) ND ND(2,500) ND ND(2,400)	ND ND(2,200) ND ND(2,000) ND ND(1,900)	008't QN 008't QN QN QN	ON O	CN CN QN CN CN CN	ND 1,300 ND 7300 ND 3,400	03/11/08	ON IN		ON TY NT NT NO	אַן אַן אַן אַן אָל אַן אָל אַן אַן	NT NT NT 2,000	N N N N N N N N N N N N N N N N N N N	Group of Holland, Michgan.
Name	Common C	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	HAZ (3.) FRAS (0.5.) FRAS (4.) FRAS (0.5.)	03/14/08 03/14/08 03/14/08 03/14/08 03/14/08 03/14/08	1.6 1.7 3.5 5.4 1.3 5.8	57 21 120 12 300	NO NO SE NO	5.8 7.2 720 3.3 700	10 5.1 600 Z./ 450	021 030 0.42 ND 1.4	0.26 CN 0.26	ON CN \$80 ON ON	35 15 3308 9.3 1,000	03H2/08 03H2/08 03H2/08 03H2/08 03H2/08 03H2/08	ON ON ON ON ON	ON ON ON ON ON	GN GN GN GN GN	OCT ON ON ON ON ON	(008,1)CIN CIN (007,1)CIN CIN (008,1)CIN CIN	ND ND(2,900) ND ND(2,700) ND ND(2,600) ND ND(2,600) ND ND(1,500) ND ND(1,500) ND ND(1,500)	ND ND(2,700) ND ND(2,500) ND ND(2,400)	ND ND(2,200) ND ND(2,000) ND ND(1,900)	008't QN 008't QN QN QN	ON O	CN CN QN CN CN CN	ND 1,300 ND 7300 ND 3,400	03/11/08			ON TH NT ND	לא זא דא דא דא	NT NT NT 2,000	NI NI NI NI NI	and, Michgan.
17. 23.7 17. 23.2 23	NAMES NAME	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HA-3 (0.57) HA-3 (47) HA-4 (0.57) FA-4 (2.5.) FA-5 (0.57) GA-5 (0.57) GA-5 (0.57) FA-5 (0.	03/11/08 03/11/08 03/11/08 03/11/08 03/11/08	1.7 3.5 5.44 1.3 5.8	21 120 12 300	ND 5.5 ND 2.1	7.2 3.3 100	5.1 (20) 2.7 (40)	030 0.42 ND 1.4	ND 0.29 ND 0.26	ON CN \$8.0 ON	35 15 3308 9.3 1,000	03/12/08 03/12/08 03/12/08 03/12/08 03/12/08		ON ON ON ON	GN GN GN	ON ON ON	(009'1)'QN QN (002'1)'QN QN	ND ND(2,700) ND ND(2,600) ND ND(1,700)	ND ND(2,500) ND ND(2,400)	(ND) (ND) (ND) (ND) (ND) (ND) (ND) (ND)	1,900 ND 1,800	ON ON ON ON ON ON	ON ON ON	ND 3300 ND 3,400	03/11/08	ON TA FA	N N	NT NT ND	ON NT NT ND	NT NT 2,000	ON IN IN IN	Wr.
NACA (0.05) NACA (0.25)	No. 1, 1990	8 8 5 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 5 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	3704/08 03/04/08 03/04/08 03/04/08	03/14/08 03/14/08 03/14/08 03/14/08	3.5 5.4 1.3 5.9	120 12 300	3.5 NO 2.1	3.3 700	250 250	0.42 NO 1.4	0.29 ND 0.26	ON CN \$8.0	15 3300 8.3 1,000	03M2/08 03M2/08 03M2/08 03M2/08		ON CA	QN QN	00 CN	(009'1)'QN QN (002'1)'QN QN	ND ND(2,700) ND ND(2,600) ND ND(1,700)	ND ND(2,500) ND ND(2,400)	(ND) (ND) (ND) (ND) (ND) (ND) (ND) (ND)	1,900 ND 1,800	ON ON ON ON ON ON	ON ON ON	3.300 ND 3.400	03/11/08		ž įž	NT ND	NT NT NO	NT NT 2,000	N IN IN	
MAC (0.5.5)	Mark (0.5.)	5	5	NA4 (0.5) NA4 (2.5) NA5 (0.5) 03/04/08 03/04/08 03/04/08	03/11/08 03/11/08 03/11/0B	5.4 1.3 5.9	12 300	02	3.3	2.7 420	N -	ND 0.26	ON CS	3300 8.3 1,000	03/12/08 03/12/08 03/12/08	CN CN	QV QV	QN CY	8 8 8 1	(008,1)CN CN	ND ND(2,600)	ND ND(2,400)	(006,1)QN GN	OD 1.800	ON ON ON	CN CN	ND 3,400	03/11/08	2 2	ž lū	ON TN	QN FV	NT 2,000	NI ND	
NAMA (CAS.)	NAME (2.25)	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HA4 (2.5) HA-5 (0.5) 03/04/08 03/04/08	03/11/0B	6.9	300		100	35	*	0.26	ON	1 000	03/12/08	2 2	ΔN	Q q	1 18	(008,1)CN CN	ND ND(2,600)	ND ND(2,400)	(006,1)QN GN	OD 1.800	ON ON ON	CN CN	ND 3,400	03/11/08	2 5	+	NO.	Š	2,000		
Number N	No. 1, 100, 100, 100, 100, 100, 100, 100,	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HA-5 (0.5) 03/04/08	03/11/0B	6.9	300		100	35	*	0.26	ON	1 000	03/12/08	2 2	ΔN	Q q	1 18	ND(1,800)	ND(1,700)	ND(2,400)	(006,1)QN	1,800	ND(1,800)	CN	3,400	Ц	╀	22	H	\mathbb{H}	+	┨	
Mar-6(2) Mar-6 (a.2) Mar-6 (b.2) Mar	144-6(2) 144-7(1) 144-8(0.2) 144-8(0	# 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	# 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Š	1.7	84	2	5.4	45.0	820	QV	Š	\$	8342	2 2	Q	2	2		_	Ш		Н	1	Ц	╀	Ц	ľ	╀		2	2 2		
Control Cont	100 100	주 시 전 기 전 기 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 8	100				┸	ᆚ			1	1	魡	ł	1 1			-	-	4		•	_			ı	- -	Ę	늘	H	ا.		
10 10 10 10 10 10 10 10	10	주 시 전 기 전 기 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	## ## ## ## ## ## ## ## ## ## ## ## ##	HA-7 (1) 03/04/08	03/11/08	1.8	22	2	3 5	, c	270	£	2	-	-+	2 2	g	2	2	S i	2 2	모	NO	9	22	9	2	-	ž	Z	Þ	ž	ž	Z	
2002/10/20/20/20/20/20/20/20/20/20/20/20/20/20	No.	주 시 전 기 전 기 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	## ## ## ## ## ## ## ## ## ## ## ## ##	HA-6 (0.5)			84	2	2 2		0.22	g	2	14	03/12/08	2 2	2	2 2	2	2	22	2 2	9	9	2 2	2	물	1	ž	ķ	Z	Ę	ž	ž	
	2.2.108 2.2.108 2.3	주 시 전 기 전 기 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	## ## ## ## ## ## ## ## ## ## ## ## ##		-	-			200	1	2	0.27	9	740	03/12/08	2	2	2	9	ND(1,600	ND(1,700	ND(2,400	ND(2,000	88	ND(1,900	9	양	80/1-W20	9	9	2	9	8 5	2	

Table 1 Results of Laboratory Analysis Performed on Soil Samples (Page 2 of 2) Frankin & Sons Industrial SocrapSted 30750 Elevands Road Dowaglac, Michigan

Prism No. 08,0191

03/05/08 03/05 03/03:08	1	QN	Н	(68) ND(7)	4	Ω				(84) ND(9	A61 NOVS	CZ Q	VOWA!	2	+	-	4	4	_	ହ ହ	+	+	NO.	+	2	Q.			L	Ļ	1	OC CO	1	2	-	(D(64) ND(7	9	ON CON	02			1	(7.3) ND(84			L	L	┞	9	ŀ	ŀ	SS	H	H		(120) ND(130)		ND CN	Q.	O(25) ND(ND 27																
Н	╁	Н	Н	Н	-	-	1	-		-	H	t	ŀ	t.	J	1	1	1	1	1	1	1		†	1			Г		t	ţ	1	1		-	_	H	H	ŀ	\dagger	†	1	1	-	١.	ŀ	ŀ	ŀ	ŀ	ŀ	╀	H	ŀ	H	H	Н	C	0		(Z	0																
H	+-	Ş	Н	Н	-	₽	₽	2	g	SQN (COZ	Ş	t	t	1	2	2	2	2	2	g	2	2	SON SO	2	Ž	Q	¥	Ž	2			3	Ž	ž	2)QN (5	Z	2	12	2 2	2	1	=		H	H	ž	ž	2,200	Ž	\$	2	Ž	Н	┝	Н		Н	2	G)	38				÷												
8 03/09/08	Š	Q	ND(78	egiQN	Ş	õ	g	Š	2	ND/BS	Y CZ	Ş	- COVER		2	2	2	Q -	ĝ	ĝ	Ş	2	ĝ	ž	Q -	Q	CN	S	Ç	Ş	2		Ž	ç	5	S)QV	Š	Ş	2	2 5	2	2	2	2	Š	Q	Ş	Q	Ž	Ž	Ž	Š	2	Q	500	ND(120)	QN	QN	Ñ	Ž	S			10.1)	CON IMPORTA												
63/05/03	L	TM	Ц		_	ž	ž	ž	IN	Ž	Ę	5	ţ	1	4	Ž	ž	ž	ž	Ż	-	4	ž	ž	Į	N	Ž	ž	Ž	1		<u> </u>	ž	ž	ž	Ź	Ž	Į	2	1	Ž	ž	Ż	ž	5	Σ	Ψ	ž	ž	2	ż	ž	Z	ž	Ë	ž	ž	ž	Ż	_	H			monandom N	Stored Memo	4											
03/05/05	9	Š	ND(78)	ND(67)	ð	Q	Ş	S	QN	NOr841	SACO.	Ş	VICTORIAL VICTORIAL		OF LOCK	Ž	Ž	ĝ	S	ş	ğ	2	Š	200 80	Q	QV.	QV	g	Ž	2	2	2	ZQC:	ĝ	ð	Ç	Ž	Ş	1		2	Ş	NO(73	2	ð	9	Q	Ž	Q	Ê	Q	g	Q	Š	NOCO	Š	CN	OX.	ğ	EBION .	Š			perational Me	ARD Open	10 mildrand											
03/25/08	Q	ş	ND(78)	(S9)CN	Q	Ş	ç	QN	Q	SS/GN	STAUN	Ş	NDVCV			Q	ç	Q	ð	Ž	Š	ç	ç	Ş Q	Š	Q	Q	g	ç		2	SON.	2	ç	9	ĝ	2	ç			2	2	NO(72)	ş	Q	ş	Q	2	QV	ę	2	Ş	Ş	ş	93,00	ND(120	S	S	Q	ND(83)	Q			SEC-RRD OF	orth in MDEC	arabone! Men											
03/04/08	Ņ	Ę	ř	¥	ž	ž	Ş	12	ž	ž	į	ţ	157		ž	ż	ž	ż	Ţ	Ź	Ę	ž	ž	ž	ž	IN	ż	ž	5	ļ	ž	ž	ž	ž	ź	ž	12	ž	1	ž	z	z	Σ	ž	ž	ž	ź	ž	ž	ž	2	ź	ž	ž	ž	ž	Z	5	ž	2	Š			actarth in ML	vals (en net!	EQ-RRD Op	!										
8070-010	3	2	L	L	L	Ц	Ц	L	L	Γ	1	₽	4	4	4	-1	2	Ö	Ô	ON	ĝ	Ş	2	Q	SO	Q	Ŷ	2	Ş	100	00 N	2	NDX270	2	_	L	l	Ş	+	+	-	-	_	L	2	2	Ş	ç	g	Ç	9	Ç	S	Q	2	ĝ	2	9	Н	L	9	1		Lovels (as a	Scheening Lo	Cforth on MD:											
03/04/08	Q	2	ND(81)	NO(69)	Q	QN	Q	ON	ş	NO/RB)	200	1	1000	3		480	2	Q	Q	QN	2	2	Ŷ	ND(150)	Ş	ğ	Š	Q	Z		2		ç	Š	Q	VD(67)	ç	Ş		2	2	2	(9/)QN	5	Q	Q	Q	Ş	ç	Ş	102	Q	Q	Ž	(85)QN	ND(120	Q	Q	Š	ND/GS	8			EUWWAIDS DO	Critoria and :	reties nemarish and in Table 2. Set. Residential and Commercial (Part 201 Owners Clean and Schwening Levels (as set forth in MDEO-RRID Operational Mandamedian No. 1).											
03/04/08	IN	Ā	۶	Ę	L.	ž	Z	Į,	Ę	ž	1	1		Z	Ž	Ż	Z	2	2	T.Z	ž	Z	Ż	Z	ž	ž	ž	Z	12		ž	ž	N	TN	LN.	Z	1X	12		2	ž	ž	⊥N⊥	Ş	Ş	2	ţ	12	12	ž		2	ž	Z	12	ž	ž	Z	ź	ž	۶			up Crieria an	and Coomup	1 Screening L											
03104/08	ON CIN	2	NO(84)	ND(72)	ç	2	9	2	g	MINGES	10000			2	70 140)	2	Ç.	ğ	QN	Q	C	ç	Q	ND(150)	QN	Ş	9	Ç	4	2	2	ND(60)	S	ç	ç	ND(70)	ç	Ş	2	2	₽	ç	(6/)QN	9	Ç	Ş	Ş	9	2	2 9		QV	9	Q	ORIGN	ND/130	Ş	8	ĊN	ND(67)	ş			Anado Clean	Part 201 Own	D Criteria an											
18		Ę	H	H	H	┞	-	┞	l	27.22		2	2	1	┪	ũ	Š	QN	Ş	ç	9	Ş	Q	õ	QZ	QN	Q	C _N	1	2	(95)QN	2	ND(290)	2	ĝ	Q	Ž			2	Q Z	Ş	Ş	2	Ç	Ę	CZ		2	2	2	Ş	2	2	Ş	2	ş	Ş	ĝ	QZ	Š			11 Part 201 G	ommendal I F	manc Clean											
77	SULL CA	2 2	ND(85)	Š	ę	2	CN	g	g	10,00			2	77/2	NO(140)	ç	9	Ş	Q	ģ	4,000	Ş	Q	ND(150)	2	Ġ	Q	Ş	1	2	ę	NO(61)	g	ON.	9	1,00N	Ç	2	2	ž	Q	2	(OSIGN	S	Š	ç	Ç	9	200	CIA C	2 6	٤	g	ç	NORTH	SD130	₽	8	g	SOME	2		, Michigan,	Commercia	O pue letture	Part 201 Q	5										
03/04/08	- 2	9 9	9	9	Ş	Q	Š	QV	GN.	S.HALIN	1					_	-	-	⊢	Q	H		Ç	Н	Ş	Ç	Q	5	1	2	ê Ç	2	ND(280)	Q	ô	ç			2	2	Š	Q	2	2	Ç	Ş	Ş	Ş		9 9	2	2 5	2	Ş	ç	2	Q	ę	ą	Ş	2		Laboratory Group of Hofland, Michigan,	me percentage and	2. Stat: Resk	Commercial	ACTION OF THE					xı ilmir.					
OCHORDE	2011/08	COLUCY							ľ	1000	į	_1.		00.330N	ĝ	7,800	ND(240)	ND(190)	-	2	14,000	QN	Q	(012)QN	ND140		SC CN			2	ND(130)	NGCBOI	9	ND(200)	N0X540)	(CCL)CN	100		NIJSZU.	ND(400)	20	õ	4.400	Q	cy6	NO CK 1 CK	10000	100707		9	2000	NO CON		W. P.C.N	100000		ND/130	NDC210	ş	NO. CADO	29,000		bereithry Gro	8 2, 30lt R	hed in Table	sidentlal and	and company					amet detection					
03/04/08	1	2 2	t	T	12	r	r		Ž	t	t	1	Ž		_	Ę	I.N	-	F		ž	ΙN	ž	H	Ē	t	ž	-		Z	٦		ž	Ž	ž	t	t	2	1	_	Z	ź	ž	Ę	1	ŀ	1			z		ž	1	į	1	į	ź	Ę	Ę	12	Į		and ALS La	ilahad in Tab	all detar retable	5 Sol- 80	D COCH. 10					outh to the t					
	5, 0	6	(X)	000	15,000	300 (X)	ž	1 800	122		5	8	8	200	(X) 008'	1,100	1,100	380	44 000	ž	õ	Ω	34,000	OD (M,X)	4.000 fX		6	1	3	2	000	940	9	3.400 (X)	ç	0000	200,	-	9	Ź	Ω	₽	360	8	9	2	150,000	(V) 000 C	2	0.70	Ž	1	200	200	2000		4.000 cx	N.	ž	OU.	002		nalytical, Inc.	criona datab	r Interface co	lahed in Tah	Daniel III (B)					criterion def					
3	+	2000	E	900	000	000	800	6	600		3	ž,	8	00	0000	000	0000	800	000 000	000 00	000 00	000.00	000 000	8,000	800		9000		- [- 1		000'09	20.000	200,000	100 000	100	200		2000	2,000,000	000,000	400,000	000 08	20.00		2000	, 000	200,000		200000	300,000	00000	2000	000	3	Ī	+-	+-	+	•	000 051	***************************************	d by extend	ar Protection	Aufece Wille	celleria ostob	CHIEFES OF LOS					therefore, the					
	1	9 5	9.	100	COO	140	240	000	100		2	(14)	1000	9	100	9008	170	9	10 000 27	2 000	3 000	6,000	5 000 2	OO GW	ε		1 600		2	0.000	130	2,000	8 600	1 600	4 mc >		3		002	1,800 2,	15,000 1,	200	Ş	Ş	3 2		1	2	3	Conce	8	3 8	3 2	5	2000	t	90	5000	13,000		Q S	7,000	Send articulysts	Drinking Wat	Chindren	Part Contract		ġ.	20.	ij		tertion limit					4
	┉┼	3 5	1	3 5	5	Ş	٤	U.S.C	3		2	8	8	જ	06	8	90	٤	5	60%	330	2300	1000	100	ş	ş	3 8		3	98	8	8	957	Ş	ş	3	3 1	8	100	250	062	300	ş	SO.		1		6		3	8	200	3 5	3 8	3 5	1	9	Ę	ŝ		15000	3351	hnology, LLC	mmarcia 1 -	noomial 1 - C	Section 1	i dine	n GROOD	nce in GRCC	Call ORCC	antenia.	ire ternet to					
		10,40	300	200	14 000 14 000 89	D. C.	×	1	200		D'AND	PP ^K G	ng/Kg	Sylven	10000	107Kg	na/Ka	XX	2,00	OX.	QX-	10/Kg	LEO'KD	Norko	OX.	1	1000		Daved 1	DY.ON	ByyKa	CX/C/	cX/cir	- XV	2000		DV-C	100K	D0.KG	pg/Kg	Loviko	C No	C Section	2		7	MOTA	Syde	One Ope Based	Вхобл	110'K9	197Kg	ģ			ŧ	Z CALCO	200	y K			4,4	dence & Tec	vites and Co.	and the Com		tion and too	тсенденсе	" an exceeds	m) exceeding) to develop of	the enterior	oundahan a	,			
000000000000000000000000000000000000000	(Sec.)	Contrario	Jane House	TOO INTO		1 + Deplementage	2000		A COLUMN	M.CO.IR	necondonolo	ę	eno						1		ecal	acon.					THE HE		ı		li	1	Į	ı			Streno	and pane	ethishe	a	Tethane				2	1	1	. I	1	ı			j.		NOOU RETUR	e o do do do	- TOTAL	See Charles				Aylenes, com	Samples collected by Prism Science & Technology, LLC and analyzed by e-Lab Analytical, Inc. and ALS Laborat	meric Reside		age Desident	GROCIOC * Generic Residential and Commercial - Oracl Comme	Shaded cells indicate at or an exceedance in GRCC DWP.	Dold cell borders indicate at or an exceedance in GRCC DC	Rold cell values indicate at or an exceedance in ORCC GSL	D a inatiomate data avaitable to develop ortents.	of a light control of the property country from the control in the release defeats to the target detection limit No Februaries executes the second terms the control of th	The part of the part	No. of Colonial Continues to the president	¥.	. *	
Collected	VOCE (Date Analyzed)	1 1 1 2 Tamachloroothano	Temorphic	Z-I entalunio	thought a	chiometro.	Total Care		Trickloude	HITTING	0000	bromootha	1.2-Dichlorobonzeno	chlorontha	chloropro	Tanahalba	chadarolica	Chicables:		1	Methylosophalicae	Prof. 2-Demba	Acetone	Accordantales			Schoolschoolschool	OCICAIDATA	Somomemane	on disuffido	on terrechlo	Chlorobertzern	and their	Lugar	-	Ollowing Park	2-Dichero	cis-1,3-Dichiorographm	mochlorom	пответон	Grouffluoro	of other	0000000		STOROGOUM	MEZHANIKACAGOS	N IDOIDS	A lon-bury	Mathylene chlande	httalone	n-Propylbenzene	yrotto	Telmchionoethene	000	an Abichi		alesouthure	riocoli ronda	are forth	DCC1000	CHOUSE AND	100	oles collecte.	C DWP - C	1 600		10 DC 10 DC	ded calls indi	t cell borders	Coll velore l	Institution	Calculation	Calculator		ND = Not Defected.	- Not Tosted	And the second s

Table 2 Results of Laboratory Analysis Performed on Groundwater Franklin & Sons Industrial Scrap/Steel 30750 Edwards Street Dowaglas, Michigan

Prism No. 08.0191

Parameter	Units	TOL	GRCC	GRCC	GRCC	HA-1(W)	HA-6(M)	HA-7(M)	HA-10(VI)	HA-11(W)	HA-11(Yr) Filtered	HA-15(W)	HA-16(W)	HA-16(W) Fixered	Pol. Wes	HA-17	HA-18	PZ-1	PZ-1
Date Coffected	8488		DW	GC	GSI	03/04/08	030403	03/04/08 03/10/08	03/05/08	93/95/08 93/11/08	03/05/09	03/05/03	03/6/03	03/06/08	03/05/03	06/11/08 06/17/03	06/12/68 06/17/08		13/17/09 19/22/08
inorganics (Data Analyzed) Arsanic		0.005	0.01	4.3	0.15	NO NO	03/19/08 NO	NO	CA	ND 0.14	NT	GN CN	ND ND	NT NT	NO ON	M M	NT TK	NI NI	NT NT
Barkum Çadırılım	mgA.		0.005	14,000 190	(X,0) (X,0)	0.11 NO	ND ND	NO NO	NO	0.0013	NT	Cirl	NO	NT	NO .	NT	NT NT	NT NT	NT NT
Chromium Copper	mg/L	0.01	0.1 1.0	460 7,400	0.011 (G)	NO	ND ND	NO NO	G/4 G/4	ND 0.037	NT NT	ND 0050	0.010	NT NT	0.0067	NT	NT	NT	M
tead .	mgA	0.003	0.004	10 970	(G,X) 0.005	CM CM	IVD IVD	ND ND	NO NO	0016 06!	0.0063 HT	ND ND	0.077 NO	GII TH	NO NO	TN TN	0.0042 NT	100 11M	ND NT
Selentum Säver	mgt.	2E-04	0.034	1,500	0 0002	CA.	ND ND	CN CN	140	NO NO	NT NT	ND ND	ND ND	NT NT	ND ND	NI NI	NT	ात वि	NT NT
Mercury Znc	mgl	2E-04 0.05	2.4	0.056 110,000	¢.0000013 (G)	NO NO	140	ND	ND	0.20	NT	1.4 03/11/03	ND 03/11/08	NT	NO 03/11/08	NT	NI	זא	NT
VOCs (Oate Analyzed) 1,1,1,2-Tetrachloroetlane	pgł	٠,	77	30,000	10 (X)	ТИ	03/11/03 I/D	03/11/08 NO	63/11/08 NO	03/11/08 ND	NT	NO	ND CM	NT	ND	NT	NT NT	NT	NT NT
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	pgł.	1	200 8.5	1,300,000 4,700	200 78 (X)	NT NT	ND ND	NO NO	NO NO	ND ND	NT NT	GN	CN CN	M	NO NO	TH TN	NT	NT	NT
1,1,2-Trichtoroethane	124	Ī	5	21,000	330 (X) 740	NT NT	ND OW	ND ND	NO NO	NO	NT NT	QN ON	GM GM	IN I	ND ND	MI NI	NT NT	NT NT	NT NT
1,1-Dichlorgethang 1,1-Dichlorgethena	h3g	1	880	2,400,000 11,000	65 (X)	NT	NO	HO ND	1.0	ND NO	TM	ND Ukl	ND ND	NT NT	NO Ost	NT TN	NT NT	NT NT	NT
1,2,3-Trichloropropana 1,2,4-Trichloroberstena	ug/L	5	42 70	84,00 <u>0</u> 19,000	NA 30	NT	KO KO	NO	ND	NO	MT	NO	U\$D	NT	NO NO	NT NT	NT NE	NI NI	NT
1,2,4-Trimethybenzena	121	1	63	56,000	17	NT	NO(1)	NO NO(1)	NO(1)	1.5 NO(1)	NT NI	ND(1)	NĐ(1)	NT NT	NO(1)	M	NT	HT	NT
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	1/91	0.2	0.2	390 25	NA 02(X)	NT NT	ND(0.035)	NO(0.035)		NO(0.085)	ਆ	NO(0.085)	NO(0.085	NT	HD(0.085)	NT	NT	NT	NT
1,2-Dichlorobenzena	ug4 ug4	1	600	160,000	16	NT NT	HD HD	NO	I4D CM	ND ND	IN TN	NO NO	NO NO	HT	ND ND	NT ·	NT	NT NT	NT NT
1,2-Dichloroethana 1,2-Dichloropropana	191	1	5 5	18,000	360 (X) 290 (X)	NT	N/D	NO	04	NO NO	NT NT	ND GM	NO NO	NT TH	CN ON	NT NT	HT HT	NI NI	NI IN
1,3,5-Trimethy@enzera 1,3-Dichlorobenzena	por	1	72 8.8	61,000 2,000	45 38	NT NT	NO NO	ND ND	NO NO	≥aD	NT	ND	NO	NT	11/0	NT NT	NT NT	NI NI	NT NT
1,4-Dichlorobenzena 2-Butanona	101 101	25	75 13,000	8,400 240,000,000	2,200	NT NT	ND ND	OM OM	ON GW	NO	NT NT	ND NO	NO NO	NT NT	IND IND	NT	M	NT	ИТ
2-Hexanone 2-Nethylnaphrhalene	1/31.		1.000	5,200,000 25,000	RA D	NT NT	ND ND	NO NO	OS1	OM GM	NT NT	04 04	ND ND	NI.	NO OA	NT NT	NT	NT NT	NT NT
4-Methyl-2-pertanone	191	50	1,800	13,000,000	1D 1,700	NT NT	NO NO	NO NO	NO NO	NO 140	NT	NO NO	NO	NT TN	ND ND	NT NT	NT NT	NT NT	TN
Acetona Acrylonikila	191	2	730 2.6	31,000,000 14,000	4.9 (X)	NT	ND	NO	NĐ	NO NO	NT NT	NO ON	NO	HI IN	ND ND	NT NT	NT TN	MI.	NT NT
Benzera Bromochioromathana	hoy	1	5	11,000	200 (X)	NT NT	NO NO	NO NO	GH CH	ND	NT	NO	110	NT	100	HT HT	NT	NT NT	111
Bramodichloromethane Bromoform	hor.	1	60	14,000	ID ID	MT	100 FD	NO NO	OM OM	ND ND	NT TM	OM OM	HO HO	NT NT	ND.	NT	HT	HT	М
Bromoverhane Carbon disulfide	Par		800	70,000	35 ED	NT	ND ND	NO NO	NO NO	ND ND	NT NT	NO NO	ND NO	NT NT	ND ND	NT NT	NT NT	NT NT	NT NT
Carbon letrachiorida	1931.	1	5	4,600	45 (X) 47	NT NT	NO NO	NO NO	NO ON	NO NO	NT NT	NO ON	NO NO	NT NT	ND ND	NT NT	NT NT	NT TH	NT NT
Chlorobenzene Chloroethane	104	5	430	88,000 440,000	Ю	NT	Œ	ND	HO.	NO	NT	CN	GN GN	NT NT	NO NO	M	NT NT	NT TN	NT NT
Chloroform Chloromethana	191	5	260	150,000	170 (X)	NT NT	ND ND	NO NO	NO NO	NO ND	NT NT	NO.	ND	NT	ND	NT	NT NT	NI	NT NT
cis-12-Dichloroethere cis-13-Dichloropropere	pg/L	1	70	200,000	520	NT NT	ND ND	NO NO	ND	NO	NT	CN	ND ND	NT NT	ND NO	NT.	NT	NT	NT NT
D-bromochloromethana	123	5	80	18,000 530,000	ID NA	NT NT	140	ND NO	ND ND	NO	NT NT	NO NO	NO NO	NT NT	ND ND	NT NT	NT NT	NT NT	NT
Dibromometharia Dichlorodifluorometharia	h3/r	5	1,700	300,000	ID Gi	NT NT	NO NO	NO ND	ND RD	NO	NT NT	C/A	ND NO	NT NT	NO NO	NT NT	NT TN	NT NT	NT NT
Diethyliether Ethylbenzene	197	1 1	10 74	35,000,000 170,000	18	NT	NO	NO	ND	ND	NT	0/4	ND NO	NT NT	UND UNI	NT	NT NT	NT HT	NT NT
isopropybenzene m.p.Xylena	pg/L pg/L	5	800	56,000	10	NT NT	NO NO	NO NO	I ₂ D I ₃ O	NO NO	NT NT	ND ND	64	101	150	NT NT	MI MI	NT NT	NT NT
Methyl lodide Methyl len-butyl ether	pg/L pg/L	. 1	40	610,000	730 (X)	NT	OM GBA	NO	140	NO NO	NT NT	ND ND	NO NO	NI.	ND NO	NT	Nt	TM	NT
Methylena citlorida	pg/L		5 520	220,000 31,000	940 (x)	NI NI	ND ND	NO NO	ND NO	NO ON	NT NT	GN GN	NO NO	NT NT	ND ND	NT	NT NT	NT NT	NT NT
Naphalaiene n-Propylberizene	1007 1007	1	80	15,000	ю	NT NT	NO NO	ND ND	ND Ckl	NO NO	NT NT	ND ND	NO NO	NI IN	ND ON	NT	NT	NT NT	NT NT
Styrene	hor Tot	1 1	100	9,700	50	NT	GA C	NO	NO	ND	NT.	NO NO	0/1	NT NT	NO NO	NT NT	NT NT	NT NT	NT NT
Tetrachioroethena Tokuana	123A		793	12,000 530,000	45 (X) 140	TH	NO NO	NO NO	NO NO	ND	NT	NO	ND	NT NT	NO NO	NT NT	NT NT	NT NT	NT NT
trans-1,2-Dichlomethane trans-1,3-Dichlompropene	pg4.	11	100	220,000	1,500	NT NT	ND	ON CN	ND ND	OH OH	NT NT	NO 80	NO NO	HT	NO	NT	NT NT	HT NT	NT NT
trans-1,4-Dichlorg-2-butene Trichloroethene	րց/Լ Մըսլ	1 1	5	22,000	200 (X)	HT	NO.	NO CH	ND ND	NO NO	NT NT	NO NO	ON GN	NT NT	NAD (4)	NT NT	NT	NT	NT NT
Trichlorofluoromethane	191	. 1	2,800	1,100,000	HA NA	HT	NO NO	0.6	NO NO	0M 0M	NT NT	ON ON	NĐ NĐ	NT NT	110	NT NT	NT NT	NT NT	М
Virryl acetate Virryl chloride	1994	. 1	2	1,000	15	NT	1/0	ND	NO NO	NO ND	NT NT	NO NO	ND ND	NT NT	140	NT TM	NT HT	NI	NT NT
Xylenes, Total PNAs (Date Analyzed)	994	3	280	190,000	35	NT	ND	NO	03/12/03	03/12/08	NT	93/12/03 ND	03/12/05 NO	NT	03/12/03 ND	NT	NT	M	NT
2-Chlomnephthalene 2-Methylnaphthalene	ug/L	5	1,600 260	8,700 25,000	NA ID	TH TH	NT NT	NT	NO NO	140	NT	ND	ND	NT	N9	NT NT	NT NT	NT NT	NT NY
Acenaphthena Acenaphthylena	pol pol	. 5	1,300 52	4,260 3,900	19	HT NT	NT NT	NT NT	(A)	ND ND	HT	ND ND	160	NT NT	NO NO	111	NT	NT	NT
Anthracene	pgl	. 5	43 2.1	43 9.4	10	श्रा स्रा	NT NT	NT	NO NO	ND NO	MT NT	NO NO	NO NO	NT NT	ND(1.5)		NT NT	NT NT	NI NI
Benzo(a)pyrena Benzo(a)pyrena	1231	1	5	1 (3/1)	10	NT NT	NT	NT NT	ND	NO NO	NT	NO NO	ND (V)	NT	ND(1.5) ND(1.9)		NT NT	NT NT	MI MI
Benzo(b)Autoranthene Benzo(g.hv)pen/lene	h3y	1	1.5 1 (M)	1.5	NA	NT	161	NT	ND	NO NO	NT NT	GM GM	ND ND	NT	ND(1.5) NO(2.1)	107	NT	NI.	TN TN
Benzo(k)Buorshibene Chrysena	h3/	. 1	1 (M) 1.6	1.6	NA ID	NT NT	NT NT	NT	140	NO	M	140	ND	NT NT	NO(15)	NT NT	NI NI	HT	NT NT
Dibanzo(a,h)antivacene (Faloranthene	194 194	- 2	2 (M) 210	2 (M) 210	1D 1.6	NT NT	NT NT	NT NT	NO NO	NO NO	NI NI	NO NO	11D	HT.	ND(1.7)	TM	NT NT	NT NT	NT NT
Flucrene Indeno(1.2.3-cd)pyrene	h3/	. 5	880 2 (M)	2,000 2 (M)	12	HT NT	TH TH	NT NT	ND NO	NO NO	NT NT	NO NO	GM GM	TN N1	ND ND	NT NT	NE	NT	NT
Naphthalana Pheranthana	P34	. 5	520	31,000	13	NT NT	NT NT	NT NT	ND NO	F/O	NT NT	NO NO	NO CM	NI,	GN GN	NT	IN EH	NT	NT Pat
Pytene	1/9/1 1/6/1	5	140	140	10	NT	HT	NT	כוא	HO	NT	NO.	NO	MT	CM	NT	NT	ा हत	NT
Notes: Sample collected by Prism Scient GRCC DW = Generic Residents	ce & Te	chroog	y, LUG and	a wyred by 6	Lab Analysic	atinc and A	i Steppenor	y Group of H	oland, Michig	1811. mini (Boat St.	i Canado Cla	ነው ላ ሮሃማሪ	and Screen	no Levais (s:	set forth in				
GRCC GSt = Generic Resider 5: and Screening Level (as set for																			
GRCC GC = Generic Residenda VDEQ RRD Operational Memor	and C	and a Di	ail-Groun	id∔ster Contact	conteria esta	cished in Ta	icla t. Groun	daster. Resid	derad and C	coneroal IP	art 201 Gene	rc Oesn,p (interfal and S	creating Lev	53 (53 \$4 KD)	y a Mil			
Shaded cell indicates at or an ex	ceedan	ce in GR																	
Bold cell value indicates at or an O = GSI criterion depends on th	e pH or a	water ha	dness, or		thing water.														
D = hodepusie data available i M = Calculated orienton is tekno	a davelo e tra are	o criteria Hysical ta	ı. eget deleci	ton kait, sheref	ore. the criter	ton defaults	to the target i	datection limit	z.										
NA = Orbarion or value is not an ND = Not Detected																			
TOL = Target detection for 4 units X = GSI pression shown in the 9	ss othe eneric ri	nvise no leanus ri	led in pere Rena takk	nthesis. Is is not sneed in	valtor surfac	ह प्रजास है स्ट	is used 85 8:	driving pala	r source.										
· AALE - WOLLE AND LEIS A A	• •							•											

1049 - 28th Street SE Grand Rapids, MI 49508

Ph: 616/248-4900 March 22, 2010 Toll Free: 800/362-LABS

Fax: 616/248-4904

Alex Wallace Wightman Environmental 4050 King Dr. PO Box 95 Sodus, MI 49126

TEL: (269) 470-0466 FAX (269) 934-7414

RE: Pokagon

Dear Alex Wallace:

Order No.: 1003083

BIO-CHEM Laboratories, Inc. received 4 samples on 3/16/2010 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative.

If you have any questions regarding these tests results, please feel free to call.

Please note that unless otherwise instructed, residual samples will be held for sixty (60) days from the original report date. At that time, all non-hazardous samples will be disposed of in accordance with federal, state and local regulations and ordinances, and hazardous samples shall be returned to you. Please contact the laboratory within thirty (30) days if other arrangements for sample retention need to be made.

Sincerely,

Lori Folkertsma

Administrative Assistant

Loui Folkertsma

Sic Shem

Chain of Custody

1049 28th Street SE • Grand Rapids, MI 49508

Ph: (616) 248-4900 • Toll Free: 800-362-LABS Fax: (616) 248-4904

Remarks War not Filhud. Date Due 100001 Date 3/15/10 Laboratory use only Project Number ☐ Regular Ice ☐ No Coolant ☐ Blue Ice _ Del (ell ed ell) 4,00,0 Time × 3-11-16 Containers (1) 50 13 Number of Sample Description (sample type: water, soil, other) Conject Person State Samples-Taken From Stago がに下した Tum around time Project Name 9,009 10,004 10:509 11:30a Received by Phone 269-934-7767 269-934.7414 Firm Name) A) A htmus (SAVI CORMUNTEL 3/15/10 City, State, Zip Firm Address 4050 King Dr. Client Sample Number 5B-1-6W 58-2-610 58-2D-GH 56.3-GW Lab I.D. Released by 10 оИ теј ო 2 တ œ 6

1

BIO-CHEM Laboratories, Inc.

Date: 22-Mar-10

CLIENT:	Wightman Environmental					
D • 4	D-1		_			

Project: Pokagon
Lab Order: 1003083

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	
1003083-01A	SB-1-GW	Aqueous	3/15/2010	3/16/2010	
1003083-02A	SB-2-GW	Aqueous	3/15/2010	3/16/2010	
1003083-03A	SB-2D-GW	Aqueous	3/15/2010	3/16/2010	
1003083-04A	SB-3-GW	Aqueous	3/15/2010	3/16/2010	

BIO-CHEM Laboratories, Inc.

CLIENT: Wightman Environmental

Project: Pokagon
Lab Order: 1003083

CASE NARRATIVE

Date: 22-Mar-10

Samples are routinely analyzed using methods outlined in the following references:

(SW) Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Ed.

- (E) Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020.
- (A) Standard Methods for the Examination of Water and Wastewater, APHA, 18th Ed.
- (D) Annual Book of ASTM Standards.

Specific methods utilized for this project are provided in the analytical report and are identified by the reference document abbreviation () followed by the method number.

All QA/QC and sample analyses met method, laboratory and/or regulatory data quality objectives unless otherwise specified below.

No data qualifications required.

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon
Lab Sample ID: 1003083-01A

Project Number: 100011

Client Sample ID: SB-1-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

Analyses	Method Ref.	Result	Q	PQL	Units	DF	Analyst	Date
Dissolved Mercury by CVAA								
1. Mercury	SW7470A	< 0.20		0.20	μg/L	1	RTD	3/22/2010
Dissolved Metal(s) by ICP								
1. Arsenic	SW6010B	< 5.0		5.0	μg/L	1	RTD	3/22/2010
2. Barium	SW6010B	< 100		100	μg/L	1	RTD	3/22/2010
3. Cadmium	SW6010B	< 1.0		1.0	μg/L	1	RTD	3/22/2010
4. Chromium	SW6010B	< 10		10	μg/L	1	RTD	3/22/2010
5. Copper	SW6010B	11		4.0	μg/L	1	RTD	3/22/2010
6. Lead	SW6010B	5.2		3.0	μg/L	1	RTD	3/22/2010
7. Silver	SW6010B	< 0.50		0.50	μg/L	1	RTD	3/22/2010
8. Zinc	SW6010B	< 20		20	μg/L	1	RTD	3/22/2010
Dissolved Selenium by NaBHR								
1. Selenium	SW7742	< 5.0		5.0	μg/L	1	RTD	3/18/2010

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

Qualifiers (Q):

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon
Lab Sample ID: 1003083-01A

Project Number: 100011

Client Sample ID: SB-1-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

1.0 1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1 1 1	GCP GCP GCP GCP GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1 1	GCP GCP GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1	GCP GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1	GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1	GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 5.0 1.0 5.0 1.0	µg/L µg/L µg/L µg/L µg/L	1 1 1	GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010
1.0 5.0 1.0 5.0 1.0	μg/L μg/L μg/L μg/L	1 1 1	GCP GCP	3/18/2010 3/18/2010
5.0 1.0 5.0 1.0	μg/L μg/L μg/L	1 1	GCP	3/18/2010
1.0 5.0 1.0	μg/L μg/L	1		
5.0 1.0	μg/L	=	GCP	3/18/2010
1.0	μg/L	1		3/ 10/2010
	ua/L		GCP	3/18/2010
1.0	F-3	1	GCP	3/18/2010
	μg/L	1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
100		1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 50 1.0 50 1.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	1.0	1.0	1.0 μg/L 1 GCP 50 μg/L 1 GCP 50 μg/L 1 GCP 1.0 μg/L 1 GCP

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

N - See case narrative for explanation

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083
Project: Pokagon
Lab Sample ID: 1003083-01A

Project Number: 100011

Client Sample ID: SB-1-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

Analyses	Method Ref.	Result	Q	PQL	Units	DF	Analyst	Date
41. cis-1,2-Dichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
42. cis-1,3-Dichloropropene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
43. Dibromochloromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
44. Dibromomethane	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
45. Dichlorodifluoromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
46. Diethyl ether	SW8260B	< 50		50	μg/L	1	GCP	3/18/2010
47. Ethylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
48. Hexachlorobutadiene	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
49. Hexachloroethane	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
50. lodomethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
51. Isopropylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
52. m,p-Xylene	SW8260B	< 2.0		2.0	μg/L	1	GCP	3/18/2010
53. Methyl tert-butyl ether	SW8260B	< 4.0		4.0	μg/L	1	GCP	3/18/2010
54. Methylene chloride	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
55. n-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
56. n-Propylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
57. o-Xylene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
58. sec-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
59. Styrene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
60. tert-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
61. Tetrachloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
62. Toluene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
63. trans-1,2-Dichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
64. trans-1,3-Dichloropropene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
65. trans-1,4-Dichloro-2-butene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
66. Trichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
67. Trichlorofluoromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
68. Vinyl chloride	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

Qualifiers (Q):

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon

Lab Sample ID: 1003083-02A

Project Number: 100011

Client Sample ID: SB-2-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

Analyses	Method Ref.	Result	Q	PQL	Units	DF	Analyst	Date
Dissolved Mercury by CVAA								
1. Mercury	SW7470A	< 0.20		0.20	μg/L	1	RTD	3/22/2010
Dissolved Metal(s) by ICP								
1. Arsenic	SW6010B	< 5.0		5.0	μg/L	1	RTD	3/22/2010
2. Barium	SW6010B	120		100	μg/L	1	RTD	3/22/2010
3. Cadmium	SW6010B	< 1.0		1.0	μg/L	1	RTD	3/22/2010
4. Chromium	SW6010B	39		10	μg/L	1	RTD	3/22/2010
5. Copper	SW6010B	25		4.0	μg/L	1	RTD	3/22/2010
6. Lead	SW6010B	4.8		3.0	μg/L	1	RTD	3/22/2010
7. Silver	SW6010B	< 0.50		0.50	μg/L	1	RTD	3/22/2010
8. Zinc	SW6010B	< 20		20	μg/L	1	RTD	3/22/2010
Dissolved Selenium by NaBHR								
1. Selenium	SW7742	< 5.0		5.0	μg/L	1	RTD	3/18/2010

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

Qualifiers (Q):

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon

Lab Sample ID: 1003083-02A

Project Number: 100011

Client Sample ID: SB-2-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

1.0 1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1 1 1	GCP GCP GCP GCP GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1 1	GCP GCP GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1	GCP GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1	GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1	GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 5.0 1.0 5.0 1.0	µg/L µg/L µg/L µg/L µg/L	1 1 1	GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010
1.0 5.0 1.0 5.0 1.0	μg/L μg/L μg/L μg/L	1 1 1	GCP GCP	3/18/2010 3/18/2010
5.0 1.0 5.0 1.0	μg/L μg/L μg/L	1 1	GCP	3/18/2010
1.0 5.0 1.0	μg/L μg/L	1		
5.0 1.0	μg/L	=	GCP	3/18/2010
1.0	μg/L	1		3/ 10/2010
	ua/L		GCP	3/18/2010
1.0	F-3	1	GCP	3/18/2010
	μg/L	1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
100		1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 50 1.0 50 1.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	1.0	1.0	1.0 μg/L 1 GCP 50 μg/L 1 GCP 50 μg/L 1 GCP 1.0 μg/L 1 GCP

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

N - See case narrative for explanation

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon

Lab Sample ID: 1003083-02A

Project Number: 100011

Client Sample ID: SB-2-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

		Result	Q	PQL	Units	DF	Analyst	Date
41. cis-1,2-Dichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
42. cis-1,3-Dichloropropene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
43. Dibromochloromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
44. Dibromomethane	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
45. Dichlorodifluoromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
46. Diethyl ether	SW8260B	< 50		50	μg/L	1	GCP	3/18/2010
47. Ethylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
48. Hexachlorobutadiene	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
49. Hexachloroethane	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
50. lodomethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
51. Isopropylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
52. m,p-Xylene	SW8260B	< 2.0		2.0	μg/L	1	GCP	3/18/2010
53. Methyl tert-butyl ether	SW8260B	< 4.0		4.0	μg/L	1	GCP	3/18/2010
54. Methylene chloride	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
55. n-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
56. n-Propylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
57. o-Xylene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
58. sec-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
59. Styrene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
60. tert-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
61. Tetrachloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
62. Toluene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
63. trans-1,2-Dichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
64. trans-1,3-Dichloropropene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
65. trans-1,4-Dichloro-2-butene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
66. Trichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
67. Trichlorofluoromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
68. Vinyl chloride	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

Qualifiers (Q): J-

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

Date: 3/22/2010

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon

Lab Sample ID: 1003083-03A

Project Number: 100011 **Client Sample ID:** SB-2D-GW

Collection Date: 3/15/2010

Matrix: AQUEOUS

Analyses	Method Ref.	Result	Q	PQL	Units	DF	Analyst	Date
Dissolved Mercury by CVAA								
1. Mercury	SW7470A	< 0.20		0.20	μg/L	1	RTD	3/22/2010
Dissolved Metal(s) by ICP								
1. Arsenic	SW6010B	< 5.0		5.0	μg/L	1	RTD	3/22/2010
2. Barium	SW6010B	< 100		100	μg/L	1	RTD	3/22/2010
3. Cadmium	SW6010B	< 1.0		1.0	μg/L	1	RTD	3/22/2010
4. Chromium	SW6010B	120		10	μg/L	1	RTD	3/22/2010
5. Copper	SW6010B	58		4.0	μg/L	1	RTD	3/22/2010
6. Lead	SW6010B	5.0		3.0	μg/L	1	RTD	3/22/2010
7. Silver	SW6010B	< 0.50		0.50	μg/L	1	RTD	3/22/2010
8. Zinc	SW6010B	28		20	μg/L	1	RTD	3/22/2010
Dissolved Selenium by NaBHR								
1. Selenium	SW7742	< 5.0		5.0	μg/L	1	RTD	3/18/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

Qualifiers (Q):

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon

Lab Sample ID: 1003083-03A

Project Number: 100011

Client Sample ID: SB-2D-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

Analyses	Method Ref.	Result	Q	PQL	Units	DF	Analys	t Date
Volatiles by GC/MS								
1. 1,1,1,2-Tetrachloroethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
2. 1,1,1-Trichloroethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
3. 1,1,2,2-Tetrachloroethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
4. 1,1,2-Trichloroethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
5. 1,1-Dichloroethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
6. 1,1-Dichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
7. 1,1-Dichloropropene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
8. 1,2,3-Trichlorobenzene	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
9. 1,2,3-Trichloropropane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
10. 1,2,4-Trichlorobenzene	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
11. 1,2,4-Trimethylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
12. 1,2-Dibromo-3-chloropropane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
13. 1,2-Dibromoethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
14. 1,2-Dichlorobenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
15. 1,2-Dichloroethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
16. 1,2-Dichloropropane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
17. 1,3,5-Trimethylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
18. 1,3-Dichlorobenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
19. 1,3-Dichloropropane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
20. 1,4-Dichlorobenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
21. 2,2-Dichloropropane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
22. 2-Butanone	SW8260B	< 50		50	μg/L	1	GCP	3/18/2010
23. 2-Chlorotoluene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
24. 2-Hexanone	SW8260B	< 50		50	μg/L	1	GCP	3/18/2010
25. 4-Chlorotoluene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
26. 4-Isopropyltoluene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
27. 4-Methyl-2-pentanone	SW8260B	< 50		50	μg/L	1	GCP	3/18/2010
28. Acetone	SW8260B	< 100		100	μg/L	1	GCP	3/18/2010
29. Benzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
30. Bromobenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
31. Bromochloromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
32. Bromodichloromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
33. Bromoform	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
34. Bromomethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
35. Carbon disulfide	SW8260B	< 50		50	μg/L	1	GCP	3/18/2010
36. Carbon tetrachloride	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
37. Chlorobenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
38. Chloroethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
39. Chloroform	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
40. Chloromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

N - See case narrative for explanation

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon

Lab Sample ID: 1003083-03A

Project Number: 100011

Client Sample ID: SB-2D-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

Analyses	Method Ref.	Result	Q	PQL	Units	DF	Analyst	Date
41. cis-1,2-Dichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
42. cis-1,3-Dichloropropene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
43. Dibromochloromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
44. Dibromomethane	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
45. Dichlorodifluoromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
46. Diethyl ether	SW8260B	< 50		50	μg/L	1	GCP	3/18/2010
47. Ethylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
48. Hexachlorobutadiene	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
49. Hexachloroethane	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
50. lodomethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
51. Isopropylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
52. m,p-Xylene	SW8260B	< 2.0		2.0	μg/L	1	GCP	3/18/2010
53. Methyl tert-butyl ether	SW8260B	< 4.0		4.0	μg/L	1	GCP	3/18/2010
54. Methylene chloride	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
55. n-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
56. n-Propylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
57. o-Xylene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
58. sec-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
59. Styrene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
60. tert-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
61. Tetrachloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
62. Toluene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
63. trans-1,2-Dichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
64. trans-1,3-Dichloropropene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
65. trans-1,4-Dichloro-2-butene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
66. Trichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
67. Trichlorofluoromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
68. Vinyl chloride	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

Qualifiers (Q):

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

Date: 3/22/2010

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon

Lab Sample ID: 1003083-04A

Project Number: 100011 Client Sample ID: SB-3-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

Analyses	Method Ref.	Result	Q	PQL	Units	DF	Analyst	Date
Dissolved Mercury by CVAA								
1. Mercury	SW7470A	< 0.20		0.20	μg/L	1	RTD	3/22/2010
Dissolved Metal(s) by ICP								
1. Arsenic	SW6010B	< 5.0		5.0	μg/L	1	RTD	3/22/2010
2. Barium	SW6010B	110		100	μg/L	1	RTD	3/22/2010
3. Cadmium	SW6010B	< 1.0		1.0	μg/L	1	RTD	3/22/2010
4. Chromium	SW6010B	< 10		10	μg/L	1	RTD	3/22/2010
5. Copper	SW6010B	8.0		4.0	μg/L	1	RTD	3/22/2010
6. Lead	SW6010B	5.6		3.0	μg/L	1	RTD	3/22/2010
7. Silver	SW6010B	< 0.50		0.50	μg/L	1	RTD	3/22/2010
8. Zinc	SW6010B	< 20		20	μg/L	1	RTD	3/22/2010
Dissolved Selenium by NaBHR								
1. Selenium	SW7742	< 5.0		5.0	μg/L	1	RTD	3/18/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

Qualifiers (Q):

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon

Lab Sample ID: 1003083-04A

Project Number: 100011

Client Sample ID: SB-3-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

1.0 1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1 1 1	GCP GCP GCP GCP GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1 1	GCP GCP GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1	GCP GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1	GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 1.0 5.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1	GCP GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010 3/18/2010
1.0 1.0 5.0 1.0 5.0 1.0	µg/L µg/L µg/L µg/L µg/L	1 1 1	GCP GCP GCP	3/18/2010 3/18/2010 3/18/2010
1.0 5.0 1.0 5.0 1.0	μg/L μg/L μg/L μg/L	1 1 1	GCP GCP	3/18/2010 3/18/2010
5.0 1.0 5.0 1.0	μg/L μg/L μg/L	1 1	GCP	3/18/2010
1.0 5.0 1.0	μg/L μg/L	1		
5.0 1.0	μg/L	=	GCP	3/18/2010
1.0	μg/L	1		3/ 10/2010
	ua/L		GCP	3/18/2010
1.0	F-3	1	GCP	3/18/2010
	μg/L	1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
100		1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0	μg/L	1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
50		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
1.0		1	GCP	3/18/2010
	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 50 1.0 50 1.0 50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	1.0	1.0	1.0 μg/L 1 GCP 50 μg/L 1 GCP 50 μg/L 1 GCP 1.0 μg/L 1 GCP

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

N - See case narrative for explanation

ANALYTICAL REPORT

CLIENT: Wightman Environmental

Lab Order: 1003083

Project: Pokagon

Lab Sample ID: 1003083-04A

Project Number: 100011

Client Sample ID: SB-3-GW Collection Date: 3/15/2010

Matrix: AQUEOUS

		Result	Q	PQL	Units	DF	Analyst	Date
41. cis-1,2-Dichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
42. cis-1,3-Dichloropropene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
43. Dibromochloromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
44. Dibromomethane	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
45. Dichlorodifluoromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
46. Diethyl ether	SW8260B	< 50		50	μg/L	1	GCP	3/18/2010
47. Ethylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
48. Hexachlorobutadiene	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
49. Hexachloroethane	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
50. lodomethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
51. Isopropylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
52. m,p-Xylene	SW8260B	< 2.0		2.0	μg/L	1	GCP	3/18/2010
53. Methyl tert-butyl ether	SW8260B	< 4.0		4.0	μg/L	1	GCP	3/18/2010
54. Methylene chloride	SW8260B	< 5.0		5.0	μg/L	1	GCP	3/18/2010
55. n-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
56. n-Propylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
57. o-Xylene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
58. sec-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
59. Styrene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
60. tert-Butylbenzene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
61. Tetrachloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
62. Toluene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
63. trans-1,2-Dichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
64. trans-1,3-Dichloropropene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
65. trans-1,4-Dichloro-2-butene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
66. Trichloroethene	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
67. Trichlorofluoromethane	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010
68. Vinyl chloride	SW8260B	< 1.0		1.0	μg/L	1	GCP	3/18/2010

Date: 3/22/2010

Definitions: PQL - Practical Quantitation Limit

DF - Dilution Factor

Qualifiers (Q):

J - Detected below PQL but above MDL: Estimated

S - Spike Recovery Outside Acceptance Limits

B - Analyte detected in associated Method Blank

ANALYTICAL DETAIL REPORT

BIO-CHEM Laboratories, Inc.

Lab Order:

1003083 Wightman Environmental Client:

Project:	Pokagon								
Sample ID	Client Sample ID	Matrix	Test Name	Date Sampled	TCLP/SPLP Date	Prep Date	QC Batch	Analysis Date	Analytical Batch
1003083-01A SB-1-GW	SB-1-GW	Aqueous	Aqueous Dissolved Mercury by CVAA 3/15/2010	3/15/2010		3/19/2010	29862	3/22/2010	MTL_D_HY_100322A
	SB-1-GW	Aqueous	Aqueous Dissolved Metal(s) by ICP	3/15/2010		3/17/2010	29850	3/22/2010	MTL_G_ICP_100322A
	SB-1-GW	Aqueous	Aqueous Dissolved Selenium by NaBHR	3/15/2010		3/17/2010	29850	3/18/2010	MTL_C_FL_100318D
	SB-1-GW	Aqueous	Aqueous Volatiles by GC/MS	3/15/2010			R64201	3/18/2010	$GCMS_Y_100318B$
1003083-02A SB-2-GW	SB-2-GW	Aqueous	Aqueous Dissolved Mercury by CVAA	3/15/2010		3/19/2010	29862	3/22/2010	MTL_D_HY_100322A
	SB-2-GW	Aqueous	Aqueous Dissolved Metal(s) by ICP	3/15/2010		3/17/2010	29850	3/22/2010	MTL_G_ICP_100322A
	SB-2-GW	Aqueous	Aqueous Dissolved Selenium by NaBHR 3/15/2010	3/15/2010		3/17/2010	29850	3/18/2010	MTL_C_FL_100318D
	SB-2-GW	Aqueous	Aqueous Volatiles by GC/MS	3/15/2010			R64202	3/18/2010	GCMS_Y_100318C
1003083-03A SB-2D-GW	SB-2D-GW	Aqueous	Aqueous Dissolved Mercury by CVAA	3/15/2010		3/19/2010	29862	3/22/2010	MTL_D_HY_100322A
	SB-2D-GW	Aqueous	Aqueous Dissolved Metal(s) by ICP	3/15/2010		3/17/2010	29850	3/22/2010	MTL_G_ICP_100322A
	SB-2D-GW	Aqueous	Aqueous Dissolved Selenium by NaBHR 3/15/2010	3/15/2010		3/17/2010	29850	3/18/2010	MTL_C_FL_100318D
	SB-2D-GW	Aqueous	Aqueous Volatiles by GC/MS	3/15/2010			R64202	3/18/2010	GCMS_Y_100318C
1003083-04A SB-3-GW	SB-3-GW	Aqueous	Aqueous Dissolved Mercury by CVAA	3/15/2010		3/19/2010	29862	3/22/2010	MTL_D_HY_100322A
	SB-3-GW	Aqueous	Aqueous Dissolved Metal(s) by ICP	3/15/2010		3/17/2010	29850	3/22/2010	MTL_G_ICP_100322A
	SB-3-GW	Aqueous	Aqueous Dissolved Selenium by NaBHR	3/15/2010		3/17/2010	29850	3/18/2010	MTL_C_FL_100318D
	SB-3-GW	Aqueous	Aqueous Volatiles by GC/MS	3/15/2010			R64202	3/18/2010	GCMS_Y_100318C